Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A mixed interface finite element for cohesive zone models

Abstract : The phenomena of crack initiation, propagation and ultimate fracture are studied here under the following assumptions: (i) the crack law is modelled by means of a cohesive zone model and (ii) the crack paths are postulated a priori. In this context, a variational formulation is proposed which relies on an augmented Lagrangian. A mixed interface finite element is introduced to discretise the crack paths, the degrees of freedom of which consist in the displacement on both crack lips and the density of cohesive forces. This enables an exact treatment of multi-valued cohesive laws (e.g. initial adhesion, contact conditions, possible rigid unloading, etc.), without penalty regularisation. A special attention is paid to the convergence with mesh-refinement, i.e. the well-posedness of the problem, on the basis of theoretical results of contact mechanics and some complementary numerical investigations. Fulfilment of the LBB condition is the key factor to gain the desired properties. Moreover, it is shown that the integration of the constitutive law admits a unique solution as soon as some condition on the augmented Lagrangian is enforced. Finally, a 3D simulation shows the applicability to practical engineer problems, including in particular the robustness of the formulation and its compatibility with classical solution algorithms (Newton method, line-search, path-following techniques, …).
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Eric Lorentz Connectez-vous pour contacter le contributeur
Soumis le : lundi 27 décembre 2021 - 13:37:14
Dernière modification le : lundi 10 janvier 2022 - 17:32:54


Fichiers produits par l'(les) auteur(s)





E. Lorentz. A mixed interface finite element for cohesive zone models. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2008, 198 (2), pp.302-317. ⟨10.1016/j.cma.2008.08.006⟩. ⟨hal-03503253⟩



Les métriques sont temporairement indisponibles