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Abstract 

The phenomena of crack initiation, propagation and ultimate fracture are studied here under the following assumptions: 

(i) the crack law is modelled by means of a cohesive zone model and (ii) the crack paths are postulated a priori. In this 

context, a variational formulation is proposed which relies on an augmented Lagrangian. A mixed interface finite 

element is introduced to discretise the crack paths, the degrees of freedom of which consist in the displacement on both 

crack lips and the density of cohesive forces. This enables an exact treatment of multi-valued cohesive laws (e.g. initial 

adhesion, contact conditions, possible rigid unloading, etc.), without penalty regularisation. 

A special attention is paid to the convergence with mesh-refinement, i.e. the well-posedness of the problem, on the basis 

of theoretical results of contact mechanics and some complementary numerical investigations. Fulfilment of the LBB 

condition is the key factor to gain the desired properties. Moreover, it is shown that the integration of the constitutive 

law admits a unique solution as soon as some condition on the augmented Lagrangian is enforced. Finally, a 3D 

simulation shows the applicability to practical engineer problems, including in particular the robustness of the 

formulation and its compatibility with classical solution algorithms (Newton method, line-search, path-following 

techniques, …). 

Keywords: fracture mechanics ; cohesive zone model ; interface finite element ; mixed finite element ; augmented 

Lagrangian 

1. INTRODUCTION 

 Various approaches are available to predict the fracture of industrial components submitted to 

excessive loading, ranging from failure criteria to non local damage constitutive laws. In order to be 

introduced in engineering simulation practices, they should meet a compromise between 

computational robustness, efficiency and physical accuracy. Other characteristics may also facilitate 

the process: consistency with former practices, simplicity, limitation of algorithmic parameters, 

applicability to various configurations, etc. In this context, the use of cohesive laws in combination 

with mixed interface finite elements is suggested, on the basis of the considerations exposed below. 

Cohesive zone models as an enhancement of the Griffith theory 

 According to [1,2], the description of crack initiation and propagation should rely at least on two 

material parameters (for instance a critical stress and a fracture energy) in order to (i) cover the 
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range of initially sound structures and cracked ones and (ii) correct the spurious scale effects 

observed with the Griffith theory [3]. Cohesive zone models, which go back to the pioneering work 

of Dugdale [4] and Barenblatt [5], constitute a sound and well-tried framework to respond this 

demand. Thus, they provide minimal improvements to overcome the limitations of the Griffith 

theory, they describe both stages of initiation and propagation, they take into account potential 

crack closure, they do not require the costly spatial refinement necessary with non local constitutive 

laws.  

The question of crack path prediction 

 Cohesive zone models have been given a variational setting [6,7] in terms of minimisation of an 

energy, which implicitly encompasses crack path prediction. However, the corresponding 

discretisation and minimisation procedures need great care in order to ensure convergence with 

mesh refinement and remain complex [8,9]. To circumvent the difficulty, an alternative consists in 

following the propagation of individual cracks, a subject that has been paid much attention for the 

last fifteen years. Though attractive, the approach must fulfil complex and interconnected demands 

in order to be predictive: construction of a geometrically continuous crack path which goes across 

pre-existing finite elements [10,11], derivation of a crack orientation criterion which provides a 

satisfactory direction as soon as damage occurs [12], applicability of the criterion in complex 3D 

situations with possibly coarse mesh [13], continuity of the structural response with respect to time 

[14], stability of the numerical scheme for crack propagation [15]. Even though specific numerical 

strategies have emerged that should cope with the full problem, see [13,16] for instance, the fact 

that it is still a very active research field yet shows that fulfilment of all the previous demands 

remains a complex task. A straightforward application in engineering practices seems premature. 

Therefore, in what follows, the crack path is postulated a priori and not predicted by the 

computation. In spite of this major restriction, many industrial applications still enter the scope of 

the article in practice, especially for small propagations or interfacial cracks. 

Multi-valued cohesive laws and penalty methods 

 Cohesive laws for cracking usually incorporate a stress threshold, contact conditions (crack 

closure) and possibly rigid unloading branches. On a mathematical ground, this results in multi-

valued functions relating the displacement gap to cohesive stresses, or equivalently to non 
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continuous differentiable energies. Note that this feature is not restricted to initial adhesion (prior to 

local cohesive zone inception) but may also appear any time after the cohesive regime is triggered 

(unloading, closure): circumventing the difficulty by introducing discontinuous elements after the 

threshold is reached does not solve every case. A regularisation of the function is often proposed in 

the literature, based on a (quadratic) penalty method (an infinite stiffness is replaced by an 

extremely high one). Though attractive, special attention has to be paid to the quadrature rule in 

order to avoid spurious stress oscillations, see [11,17] for interface elements. Namely, the usual 

Gaussian quadrature rule lacks the necessary properties to ensure convergence with combined mesh 

refinement and penalty [18]. Moreover, a penalty stiffness may result in ill-conditioning of the 

global stiffness matrix, leading to increasing computational costs with penalty. At last, as soon as 

the energy is no more convex (which is the case of cohesive laws), the solution is not necessarily 

continuous with respect to the penalty parameter, raising the crucial question of how to choose the 

latter. Even though operational, penalty methods seem to need great care and expertise, and may not 

be adequate for common engineering practices. Therefore, we suggest not to regularise the problem 

but to eliminate the displacement discontinuity at a local level through a decomposition – 

coordination method [19]. 

Discretisation of displacement discontinuities 

 Under the assumption of a priori knowledge of the potential crack paths, a straightforward 

method of discretisation consists in explicitly meshing the crack paths with interface finite 

elements. Application of the above-mentioned decomposition – coordination method then results in 

a mixed interface element which is the purpose of the article : its unknowns are the displacements 

(quadratic shape functions) and the cohesive force densities (linear shape functions). This extends 

the ideas of mortar elements [20], also widely applied to contact problems (a special case of 

cohesive law), see for instance [21]. 

 Other discretisation techniques could have been considered, which would have avoided the 

explicit meshing of the crack path. Extended finite elements (X-FEM) [22,23] introduce global 

unknowns for the displacement discontinuity. However, avoiding penalty regularisation appears 

more difficult than for interface elements. Even though some promising results have been obtained 

for linear tetrahedrons in the treatment of contact conditions [24], the discretisation of the contact 
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pressure remains heuristic and may fail to fulfil the LBB condition. Alternatively, embedded 

discontinuity finite elements (E-FEM) [25,26] rely on a local (i.e. at the element level) 

discretisation of the displacement discontinuity which can be eliminated from the global system by 

static condensation, hence avoiding penalty [27]. But the stability condition (patch-test) requires a 

non symmetrical formulation. Moreover, presentations of E-FEM in the literature generally rely on 

a  linear interpolation of the displacement field and a constant jump inside each element, resulting 

in poor convergence rates with mesh refinement. Even though the extension to non constant jumps 

has been proposed in [28] to circumvent locking phenomena, higher degree interpolations would 

raise the question of the algorithmic implementation to perform the static condensation. Regarding 

the advantages and drawbacks of each family of elements, we choose to privilege the mixed 

interface finite element. We think that the other families are better suited for the more difficult 

problem of crack path prediction. 

 

 The article is organised as follows. Section 2 shows how the application of the decomposition – 

coordination technique to cohesive problems leads in a natural way to the definition of a mixed 

finite element based on an augmented Lagrangian. Section 3 details the resulting integration of a 

special cohesive law which possesses all the basic features to be representative of more complex 

laws: perfect initial bonding, mixed-mode fracture, irreversibility, crack closure, stress-free ultimate 

fracture). Then, the implementation is validated by a test problem which admits a closed-form 

solution. Section 4 is dedicated to numerical analyses of the convergence with mesh refinement. 

Finally, a 3D application is shown that highlights the potency of the approach.  

2. CONSTRUCTION OF A MIXED INTERFACE FINITE ELEMENT 

2.1 Preliminary: main assumptions 

 In order to focus on the interface elements without additional complexity, the following 

assumptions are postulated from now on: 

– postulated crack path. As stated in the introduction, the crack path is considered given a priori 

and not a result of the computation. Thus it is explicitly meshed with interface elements; 
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– infinitesimal perturbation. In particular, the displacements should keep small enough so that 

geometrically coincident points on both sides of the crack path be considered remaining 

coincident. This is reasonable in the context of brittle fracture; 

– elastic bulk behaviour. Definition of the interface element is independent of the constitutive 

law inside the bulk material. However, for the sake of simplicity, the numerical simulations are 

led with an elastic bulk behaviour. The only non linearity then results from the cohesive law. 

2.2 Modelling fracture as an energy minimisation 

 In their approach of cohesive fracture mechanics, Francfort and Marigo [6] describe the state of a 

structure Ω  through the displacement field u  which may admit discontinuities � �=δ u  across 

surfaces ( )Γ u . For a given load, the actual displacement is characterised by an optimality 

condition: it is a local minimum of the potential energy, expressed as the sum of the elastic strain 

energy, the cohesive energy and the work of external forces : 

 

( ) ( ) � �( ) ( )

( ) ( ) ( ) ( )

pot el fr ext

el fr

( )
/ ( )

E E E W

E ( ) ; Ed d

Γ
Ω Γ

= + −

= Φ Ω = Π Γ
⌠ ⌠ ⌡⌡ u

u

u u u u

u ε u δ δ
 (1) 

where ε  is the strain tensor, Φ  the (bulk) strain energy density and Π  the (surface) cohesive 

energy density. In such a presentation, the fracture mechanisms are considered reversible. In the 

next section, some irreversibility will be introduced through the dependence of the cohesive energy 

on internal variables. In that case, the loading path has to be discretised, but the solution over a 

given load increment is still characterised by (1), i.e. a minimisation with respect to the 

displacement field. It is remarkable that all features of the problem are deduced from the 

minimisation step, namely: 

– cohesive law. It relates the displacement discontinuity δ  to the traction vector t  through 

(generalised) differentiation of Π ; 

– contact conditions. They are enforced by means of the cohesive energy which involves an 

indicator function that precludes interpenetrations. 
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– stress criterion for crack inception. Its derivation is detailed in [7]. Note that it is reduced to 

=σ 0  as soon as the cohesive energy density Π  is differentiable at 0=δ . Therefore, the non 

differentiability of Π  at 0=δ  is an essential requirement to get a non zero stress threshold; 

– crack path prediction. Indeed, all possible discontinuous displacements may be considered;  

However, considering all possible discontinuous displacement lead to severe computational 

difficulties related to the discretisation of the functional space ( )BD Ω . In particular, allowing 

discontinuities across each finite element is not a converging process and thus it results in mesh 

dependency. Some attempts have been led, based either on a regularisation of discontinuities [8] or 

on mesh adaptation [9], but they are restricted to Griffith surface energy and still result in complex 

computations. Hence the assumption of postulated crack path: potential displacement 

discontinuities appear only across surfaces Γ  which are postulated a priori and do no more depend 

on u . 

2.3 Derivation of a saddle-point problem through a decomposition – coordination method 

 Even though the crack path is postulated, a straightforward minimisation of the potential energy 

is out of reach because of the non differentiability of the cohesive energy. In order to circumvent the 

difficulty, a decomposition – coordination technique [19] is introduced which confines the non 

differentiability to a local level (Gauss points) 

2.3.1 Augmented Lagrangian 

 The relation between the discontinuity field δ  and the displacement field u  is explicitly 

introduced into the minimisation process. Consider the energy E which depends explicitly on both 

u  and δ : 

 ( ) ( ) ( ) ( )ext

\

E , ( ) Wd d

Ω Γ Γ

= Φ Ω − + Π Γ⌠ ⌠
 
⌡ ⌡

u δ ε u u δ  (2) 

Minimisation of the potential energy (1) is then equivalent to the following constraint problem, 

where it is implicitly assumed that the displacement should belong to the set of kinematically 

admissible displacements: 

 
� �

( )
,

min E ,
=

u δ
u δ

u δ  (3) 
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The linear constraint � �=u δ  is treated by dualisation: a saddle point ( ), ,u δ λ  of the following 

Lagrangian � , where λ  denotes the field of Lagrange multipliers, corresponds to a solution ( ),u δ  

of (3): 

 ( ) ( ) � �( )
.

, , E ,
def

d

Γ

= + ⋅ − Γ⌠

⌡

u δ λ u δ λ u δ�  (4) 

In order to gain some coercivity with respect to δ  which will prove necessary hereafter, a penalty 

term is finally added, without influence on the solutions since it is equal to zero for a fulfilled 

constraint. This results in the augmented Lagrangian r� , with r  the penalty coefficient: 

 ( ) ( ) � �( ) � �( )2

.
, , E ,

2r
def

r
d d

Γ Γ

= + ⋅ − Γ + − Γ⌠ ⌠
 
⌡ ⌡

u δ λ u δ λ u δ u δ�  (5) 

Remark: 

In the context of adhesion ( 0=δ , 0Π = ), an alternative is proposed in [29]. It relies on a 

discontinuous Galerkin method to enforce weakly the constraint � � 0=u . It results in finding the 

stationary point of the following functional with respect to u : 

 ( ) ( ) ( ) � � � � ( ) ( ) ( )1 2
2

J E ,0 with
2 2

r
d d

Γ Γ

⋅ + ⋅
= + ⋅ Γ + Γ =

⌠ ⌠
  
⌡ ⌡

σ u n σ u n
u u Σ u u u Σ u  (6) 

where 1
σ  and 2

σ  denote respectively the stress field on both sides of Γ  and n  is its local normal. 

( )Σ u  appears as an average stress vector. A comparison of the expressions (5) and (6) shows that 

the Lagrange multiplier is actually replaced by the average stress vector. Therefore, it avoids the 

introduction of the additional unknowns λ  but requires the computation of ( )Σ u  which is not 

common in the context of displacement-based finite elements and may depend on the local topology 

of the mesh. Extension to non linear cohesive laws seems to remain an open question.  

2.3.2 Example : application to contact problems 

 It has been shown in [30] that in the case of pure contact conditions (no cohesive force), the 

minimisation with respect to δ  admits a closed-form solution which coincides with the augmented 

Lagrangian initially introduced in [31]. Indeed, the function Π  reduces to an indicator function in 

that case : 

 ( ) ( ) 0 if  0
I

if  0
n

n
n

+

δ ≥
Π = δ =+ ∞ δ <
δ

ℝ
 (7) 
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where the subscript n  denotes the component normal to the contact surface Γ  ( nδ = ⋅δ n  is the 

opening displacement, n  is the normal to Γ ). The indicator function precludes interpenetration 

since negative displacement jumps would result in an infinite energy (hence not a minimum). A 

straightforward minimisation of the augmented Lagrangian with respect to δ  leads to the following 

expression (in which the MacCauley brackets x  denote the positive part of a scalar x ): 

 ( ) ( ) ( ) � �
2 2

el ext

1
min , , E W

2r n n nr u d
r

Γ

 = − + − − λ − λ Γ
 

⌠


⌡

δ

u δ λ u u�  (8) 

It is exactly the augmented Lagrangian introduced in [31]. This result suggests that some properties 

obtained for mixed duality-penalty contact methods may be extended to the present cohesive 

approach, in particular the choice of adequate finite elements. 

2.3.3 Characterisation of the saddle-point 

 The solution algorithm will not deal with the inequality characterisation of a saddle-point but 

with the variational optimality conditions. For the augmented Lagrangian (5), the latter read: 

 � �( ) ( )0 withr d

Γ

 ∀ δ − − − ⋅δ Γ = ∈∂Π 
⌠

⌡

δ t λ u δ δ t δ  (9) 

 � �( ) � � ( ) ( )ext

\

( ) W withd r d

Ω Γ Γ

∂Φ
 ∀ δ δ Ω + + − ⋅ δ Γ = δ =  ∂

⌠ ⌠
 
⌡ ⌡

u σ : ε u λ u δ u u σ ε
ε

 (10) 

 � �( ) 0d

Γ

∀ δ − ⋅δ Γ =⌠

⌡

λ u δ λ  (11) 

The equation (9) enforces the cohesive constitutive law. Signification of the subgradient ∂Π  will be 

given in section 3; at this stage, it is sufficient to say that ( )∈ ∂Πt δ  means that t  and δ  are related 

by the cohesive constitutive law. Therefore, the equation (9) provides an interpretation for the 

Lagrange multiplier λ : except for the penalty term, the Lagrange multiplier measures the cohesive 

forces. The equation (10) expresses the equilibrium inside the bulk and along the discontinuity 

surface Γ . Finally, the equation (11) enforces the constraint between the displacement field and its 

discontinuities. 
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2.4 Finite element discretisation 

 As the crack path Γ  is postulated and thanks to the infinitesimal perturbation assumption, the 

spatial discretisation of the system (9)-(11) may rely on a simple kind of mortar segment-to-

segment element. As depicted in figure 1, consider that the sub-domains −Ω  and +Ω  (the parts of 

Ω  respectively below and above Γ ) are discretised by tetrahedra or hexahedra so that the nodes on 

both sides of Γ  coincide. Note that this is not a stringent demand for a meshing algorithm, at least 

for simple shapes for Γ , namely planes. In that case, degenerated prisms or hexahedra can be used 

to discretise Γ  and relate both lips −Γ  and +Γ  of the potential cohesive crack. 

 Consider a given mesh, henceforth characterised by the subscript h  (maximal size of finite 

elements, for instance). A quadratic interpolation with classical Lagrange finite elements (P2-

continuous) is adopted inside the bulk. The space of discrete displacement fields h�  reads : 

 ( ) ( ) { };h

 
= ∀ ∈Ω =    
 

u x u x N x U�  (12) 

where { }U  denotes the displacement nodal vector and [ ]N  the matrix of quadratic shape functions. 

The trace of the interpolated displacement on −Γ  and +Γ  is piecewise quadratic too, and such is the 

displacement discontinuity: 

 ( ) ( ) { } ( ) ( ) { };
− +− +Γ Γ∀ ∈Γ = =      s u s N s U u s N s U  (13) 

 � � ( ) { } ( ) ( ) ( )
.

( ) with
def

+ −∀ ∈Γ = = −              s u s D s U D s N s N s  (14) 

where [ ]−N  and [ ]+N  are the trace of [ ]N  respectively on −Γ  and +Γ  and [ ]D  the matrix for the 

quadratic shape functions which interpolates the displacement jump. Note that it is convenient to 

introduce a rotation into [ ]D  to get the components of � �u  in a local co-ordinate system to 

distinguish the normal and the tangential parts. 

 The Lagrange multiplier field λ  is interpolated on Γ  by means of piecewise linear shape 

functions (P1-continuous), resulting in the space of discrete Lagrange multipliers h� : 

 ( ) ( ) { };h

 
= ∀ ∈Γ =    
 
λ s λ s L s Λ�  (15) 

where { }Λ  collects the nodal unknowns for the Lagrange multiplier and [ ]L  is the matrix of linear 

shape functions on Γ . Thus, the constraint � �=u δ  enforced by (11) is only achieved in a weak 

sense. 
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 At last, the discretisation of the discontinuity field h∈δ �  is simply based on collocation points 

on Γ , of co-ordinates gs . They are chosen to be the integration points of the Gauss quadrature rule 

with three (triangles) or four (quadrangles) points by element. Actually, this corresponds to a P1-

discontinuous interpolation of δ . The weights of the Gauss points are denoted gω ; they will be 

used to compute the integrals in (9)-(11). The spatial discretisation, the corresponding notation and 

pictures of the finite elements are given in table 1. 

 The field δ  may vanish from the global formulation by means of static condensation. Indeed, 

with such a discretisation, (9) results in the exact satisfaction of the cohesive constitutive relation at 

each collocation point : 

 ( ) ( )
{ } ( )
{ } ( )

;
with

;

g g g g

g g g g g

g g g g

r
     = =     = + − ∈∂Π 

    = =      

u D U D D s
t λ u δ δ

λ L Λ L L s

� �
� �� 	

� �
� �� 	  (16) 

Integration of the constitutive relation, i.e. solution of (16) as detailed in the next section, allows to 

compute gδ  as a function (denoted δ
⌢

) of { }U  and { }Λ : 

 ( ) ( ) ( ) ( )ˆ , ,g g g g g g g gr= + − ∈∂Π ⇔ = =t λ u δ δ δ δ u λ δ U Λ
⌢

� � � �
� � � �� 	 � 	  (17) 

The penalty parameter r  will be adjusted so that the solution gδ  to (16) be unique, whatever { }U  

and { }Λ . This is a demand to ensure robustness. 

 The introduction of (17) into (10) and (11) then provides the non linear system the unknowns of 

which are the nodal displacements { }U  and the nodal Lagrange multipliers { }Λ : 

 [ ] ( ) { } { } ( )( ) { }TT

ext

\

, Fg g g g
g

d r r

Ω Γ

     ∇ Ω + ω ⋅ + − =     
⌠

⌡

∑N :σ U D L Λ D U δ U Λ
⌢⌢

 (18) 

 { } ( )( )T
, 0g g g

g

   ω ⋅ − =   ∑ L D U δ U Λ
⌢

 (19) 

The bulk integral and the nodal vector of external forces are computed in a classical way. Finally, 

this system is solved simultaneously with respect to { }U  and { }Λ  by means of a (generalised) 

Newton method, where the tangent operator is symmetrical since (18)-(19) correspond to a saddle-

point problem. 

 Other solution techniques could have been considered to find the saddle-point of the augmented 

Lagrangian (5), depending in which order the variables u , δ  and λ  are treated. Some alternatives 

are proposed in [19] based on Uzawa type algorithms. In particular, one of them corresponds to the 
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LATIN method proposed in [32] and is based on the following loop scheme: (i) minimisation with 

respect to δ  (the local non linear problem), (ii) updating the Lagrange multiplier λ  by a gradient 

method, (iii) minimisation with respect to u  (the global linear problem) and (iv) updating again λ . 

Complementary highlights about this proposition can be found in [33]. In [30], another alternative is 

suggested : (i) combined minimisation with respect to ( ),u δ , then (ii) actualisation of λ  by a 

gradient method. The latter may also be replaced by a BFGS method, see [34] in another context. 

Among the many solution techniques, our choice of the Newton method as in [31] is motivated by: 

– its good scalability with respect to increasing number of degrees of freedom, 

– its classical algorithmic setting in pre-existing finite element software, 

– its compatibility with other algorithmic procedures (line-search, path-following methods, etc.). 

2.5 Some insights towards mathematical investigations 

 A precise mathematical analysis of the mixed formulation of the cohesive problem is out of the 

scope of the article. In this part, we only aim at gaining some confidence regarding the choice of the 

augmented Lagrangian and the spatial discretisation. Most of the comments hereafter are based on 

analyses dedicated to contact problems. Therefore, they are only hints for the comprehension of 

cohesive problems.   

2.5.1 Appropriate functional space for the Lagrange multiplier 

 Thanks to the bulk elasticity, (each component of) the displacement field belongs to the space 

( ) ( )1 1H H− +Ω × Ω . Hence, the displacement discontinuity lies in the space ( )1 2H Γ . And to fulfil 

the LBB condition for the continuous problem, the space for the Lagrange multiplier is its dual, 

( )1 2H − Γ , see [35]. Other choices such as ( )2L Γ  would not satisfy the LBB condition. However, 

according to [36], solution algorithms based on the augmented Lagrangian require at least the 

( )2L Γ  regularity in order to avoid a dependency on the penalty parameter. Else, there is weak 

convergence towards the solution in ( )1 2H − Γ  with increasing penalty parameters. Fortunately, the 

effective solution mostly belongs to ( )2L Γ , except for very singular loading  [36,18]. 

 Therefore, regarding these possible limitations, a numerical analysis of the dependence on the 

penalty parameter and of the convergence is led in section 4. 
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2.5.2 Choice of finite element interpolations 

 The mixed finite element discretisation must satisfy stability conditions among which the 

discrete inf-sup one (LBB condition). This prescribes that the space for the discrete Lagrange 

multiplier should not be too large compared to the space for the discrete displacement along the 

crack [37]. In particular, a P1-discontinuous interpolation of λ  with P2-continuous u , which 

corresponds to the limit of penalty methods with a Gaussian quadrature rule, does not satisfy the 

inf-sup condition [35]. 

 Actually, with a P2-continuous interpolation for u , the following choices have been analysed in 

[35] which satisfy the inf-sup condition : P2/P2, P2/P1-continuous and P2/P0. Practical 

considerations then lead us to the choice P2/P1. Indeed, P2/P2 interpolations may produce 

oscillatory results for coarse meshes, even though the oscillations vanish with mesh refinement 

[18]. In addition, we observe that the numerical algorithm requires more iterations to converge than 

with a P2/P1 discretisation, a fact also reported in [18]. And that without benefit compared to the 

accuracy and convergence rate obtained with a P2/P1 element. On the other hand, P0 Lagrange 

multipliers hinder application of the Newton method because the tangent matrix is no more 

invertible. Moreover, they induce a loss of accuracy. Therefore, they are disregarded, which leaves 

us with the P2/P1-continuous finite element, probably the best choice for the considered problem. 

2.5.3 Stabilizing effect of penalty  

 To ensure stability of the finite element formulation, another condition should be fulfilled : the 

ellipticity condition. On the contrary of the LBB condition, this one prescribes that the space for the 

discrete Lagrange multiplier should not be too small compared to the space for the discrete 

displacement along the crack [37]. Else, displacement oscillation modes may appear with mesh 

refinement. The condition is more complex to state in the case of non linear problems; in particular, 

the lack of convexity and coercivity of the cohesive energy adds some specificities. 

 We propose here a rough observation which highlights the role of the penalty coefficient. 

Consider the patch-test in which the displacement field u  is linear with constant discontinuity: 

 � � 0 constant=u δ  (20) 
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This displacement field is introduced in the discrete problem (17)-(19); a solution 0=δ δ  is 

expected to pass the patch-test. Unfortunately, depending on the penalty parameter, this is not 

necessarily true. Indeed, the weak constraint (19) only enforces: 

 ( )0 0s.t. 0h h hd ⊥

Γ

∈ ∀ δ ∈ − ⋅δ Γ = ⇒ − ∈⌠

⌡

δ λ δ δ λ δ δ� � �  (21) 

The vector space h
⊥

�  is not reduced to { }0  because dim dimh h< ��  (respectively P1-continuous 

and P1-discontinuous polynomials on Γ ). Actually, h
⊥

�  enables oscillations of δ  around 0
δ . They 

should be controlled by the cohesive energy Π  since, in the present case, the discrete system (17)-

(19) may be reinterpreted as the following minimisation problem, with 0 1= +δ δ δ : 

 ( ) ( ) ( )1 1 1 0 1 1 1Find minimising with
2h r r

r
d⊥

Γ

∈ Π Γ Π = Π + + ⋅⌠

⌡

δ δ δ δ δ δ δ�  (22) 

However, Π  is neither convex, nor coercive in h
⊥

�  (section 3). Alone, it is not sufficient to control 

the oscillations in order to ensure 1 0=δ . The role is devoted to the penalty term. Suppose that there 

exists a constant cH  such that rΠ  is strictly convex (and coercive) for any cr H>  (in the case of 

frictionless contact, one has 0cH = ).  Then, 1 0=δ  is the only solution, thanks to convexity: the 

penalty term controls the oscillations. In addition, it will be checked in section 4 that for increasing 

mesh refinement, the solution does not depend on the value of cr H> . 

3. INTEGRATION OF THE COHESIVE CONSTITUTIVE LAW 

 The cohesive constitutive behaviour is totally defined by the cohesive energy density ( )Π δ . 

Even though the variational formulation of the previous section encompasses many choices of 

cohesive energy, we now focus on a specific cohesive model so as to illustrate the integration 

procedure and in particular how the non-differentiability should be treated. For the sake of 

simplicity, its only features are : 

(i) contact conditions; 

(ii) perfect initial bonding; 

(iii) fracture triggered by both tension and shear; 

(iv) total ultimate fracture, i.e. zero cohesive forces beyond some damage level; 

(v) irreversibility of fracture. 
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In particular, it means that there is no ultimate friction, nor distinction between tension and shear 

fracture mechanisms. Nevertheless, these features seem sufficient to evaluate the capabilities of the 

mixed finite element in realistic configurations, as shown in the next section where some 

simulations based on this model will be performed.  

 

Preliminary notations. 

Because of the non interpenetration constraint, the direction n  normal to the crack path Γ  

(opening/compression) has to be distinguished from the in-plane directions (sliding/shear). 

Therefore, the following notations are introduced, where v  denotes any vector quantity: 

 ( )1 2

// //1 ; ; ; ;n n nv v v
+ + + +

⋅ = = ⋅ = − = + = ⋅n n v n v v n v n v v v v  (23) 

3.1 The Talon – Curnier constitutive law 

 The cohesive constitutive law proposed by Talon and Curnier [38] fulfils the five 

abovementioned demands and can easily be cast into the energetic framework (1). The responses of 

the model in pure tension and pure shear and the stress initiation criterion are plotted in figure 2. 

The corresponding cohesive energy is defined as follows. 

 First, tension and shear displacement discontinuities are combined in a unique scalar eqδ  which 

measures the magnitude of the discontinuity, hence fulfilling (iii). Here, a quadratic form is 

assumed for sake of simplicity: 

 eqδ = ⋅δ δ  (24) 

Then, irreversibility (v) is taken into account by means of an additional scalar internal variable κ  

which measures the current maximal loading level: 

 ( ) ( )sup eq
t t

t t
′<

′κ = δ  (25) 

The cohesive energy depends on the internal variable κ  and on the equivalent displacement jump 

eqδ . Contact conditions (i) are taken care by an indicator function which restricts the normal 

discontinuity to 0nδ ≥  (opening): 

 ( ) ( ) ( )( ), I max , with :n eq+
+Π κ = δ + ψ δ κ ψ →δ

ℝ
ℝ ℝ  (26) 
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The function ψ  characterises namely the response to a monotonous pure mode I solicitation. 

Following [7], ψ  should be a differentiable increasing function, where ( )0c ′σ = ψ  defines the 

critical stress which parameterises the initiation criterion (ii). Moreover, stability of the fracture 

process requires that ψ  be concave [39]. And at last, the ultimate fracture demand (iv) is fulfilled as 

soon as ψ  reaches its upper bound cG  for a finite value c
eqδ = δ , where cG  is the fracture energy 

and cδ  the critical opening beyond which cohesive forces vanish. Therefore, the following function 

ψ  is chosen, which corresponds to the characteristics depicted in figure 2: 

 ( ) 2 if

if

eq eqc c
eqc c

eq

c c
eq

G

G

 δ δ 
− δ ≤ δ  δ δψ δ =  

 δ ≥ δ

 (27) 

along with the relation between material parameters: 

 
1

2
c c cG = σ δ  (28) 

 At this stage, the cohesive energy and hence the constitutive law are totally defined. 

Nevertheless, it may be interesting to explicitly express the relation between the displacement 

discontinuity δ  and the tension vector t , which is condensed in the following differential inclusion, 

where ∂Π  denotes the sub-gradient of Π  in the sense of Clarke [40]:  

 ( )∈ ∂Πt δ  (29) 

For a given value of κ , a rough interpretation of the subgradient ( )∂Π δ  is the set of slopes less 

steep than any directional derivative of Π  at δ  (all admissible directions are considered). 

Mathematically, it reads: 

 ( ) ( ){ }3 3; ,∂Π = ∈ ∀ ∈ ⋅ ≤ Πδ t υ t υ δ υ
�

ℝ ℝ  (30) 

where ( ),Π δ υ
�  is the directional derivative of Π  at δ  along the direction υ : 

 ( ) ( ) ( )
0

, limsup
+ζ →

→

Π + ζ − Π
Π =

ζ
d δ

d υ d
δ υ

�  (31) 

This definition coincides with the gradient of Π  anywhere Π  is differentiable. Therefore, 

considering (26), points which deserve a special attention are 0=δ , 0nδ =  and eqδ = κ . Following 

the definition (30), the subgradient is determined by means of straightforward (but cumbersome) 
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computations. Its expression depends on the considered point ( ),κδ , with four different domains 

corresponding to four different regimes of constitutive behaviour. It reads:  

– point ( ), 0= κ =δ 0  : perfect adhesion, i.e. initiation criterion  

 ( ) { }3 ; c

+
∂Π = ∈ ≤ σδ t tℝ  (32) 

– domain where eqδ < κ  : crumpling 

 ( ) { }; 0 and 0 and 0n n n n nt t t∂Π = ≤ δ ≥ δ =δ n  (33) 

– hyper-cone 0eqδ = κ >  : unloading 

 ( ) ( )
; 0 and 0 and 0 and 0n n n n nt t t

′ψ κ 
∂Π = + ρ ≤ ρ ≤ ≤ δ ≥ δ = κ 

δ n δ  (34) 

– domain where eqδ > κ  : damage 

 ( ) ( ) ; 0 and 0 and 0n eq n n n n
eq

t t t
  ′∂Π = + ψ δ ≤ δ ≥ δ = δ  

δ
δ n  (35) 

Remarks: 

1. There exists a domain for the cohesive force which corresponds to a zero discontinuity (32): it 

is indeed an initiation criterion, depicted in figure 2c. This is related to the non differentiability 

of Π  at 0=δ . The shape of the domain depends directly on the expression of eqδ . Note that 

the domain is larger than the one exhibited in [7] because there is only one crack direction 

which is considered (normal to n ) instead of any possible direction. 

2. The Kuhn and Tucker condition which appears in (33)-(35) means that in the case of possible 

contact ( 0nδ = ), the cohesive force is compressive ( 0nt ≤ ) and the value of the compression 

is left undefined by the constitutive law. 

3. There exists a gap between crumpling and damage conditions, that is the cohesive force is not 

continuous with respect to the displacement discontinuity (34). 

4. In case of pure mode I or pure shear mode, the responses in figure 2 are retrieved. Note that 

the peak values in tension and in shear modes are equal because of the choice of the norm (24). 

3.2 Numerical integration 

 According to (17), numerical integration of the constitutive relation consists in computing gδ  for 

given values of  gu� �
� �� 	  and gλ , and that for each Gauss point (from now on, the subscript g  is 
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omitted). Thus, application of the mixed interface finite element leads to a constitutive law 

integration where forces are inputs (along with the displacement discontinuity � �u  and the internal 

variable κ ) and displacement gaps are outputs, i.e. the reverse format of usual (primal) interface 

elements. Actually, (17) is a characterisation of the following minimum: 

 � �( ) � �( ) ( ) � � ( )
3

2
min , ,

2

r
r r

∈

 ⋅ − + − + Π κ ⇔ + − ∈ ∂Π κ  δ

λ u δ u δ δ λ u δ δ
ℝ

 (36) 

Moreover, the evolution of the internal variable κ  should be involved. A discretisation of time is 

necessary. Consider a sequence of instants 0 1 nt t t< < <…  and the corresponding quantities n
λ , 

nu� �
� �� 	 , 

n
δ  and nκ . Application of an implicit scheme to discretise the model of irreversibility 

introduced in (25)-(26) results in a two-step iterative process [41]: 

 ( ) ( ) ( )
3

2
1arg min ,

2
n n n n nr −

∈

 = ⋅ − + − + Π κ  δ

δ λ u δ u δ δ
ℝ

� � � �
� � � �� 	 � 	  (37) 

 ( )1max ,n n n
eq

−κ = κ δ  (38) 

Of course, the actualisation (38) does not raise any question; solving the discretised system (37)-

(38) then reduces to the problem (36) with 1n−κ = κ , hence a fixed parameter. A graphical 

interpretation of the differential inclusion in (36) is provided in figure 3 in the case of pure mode I 

without unloading : a solution is the intersection of the linear function � �r r+ −δ λ u δ֏  with the 

graph ( )1, n−∂Π κδ ; in particular, the penalty coefficient r  is the (negative) slope of the linear 

function. 

 In order to achieve robustness of the integration, it is desirable that the function between brackets 

in (36) be strictly convex with respect to δ  so that the minimum be unique. This is equivalent to the 

strict convexity of the augmented function rΠ  introduced in (22). Therefore, it is not only a 

question of robustness, important by itself, but also of well-posedness to avoid oscillations as stated 

in subsection 2.5.3. Introducing cH  the softening modulus of the constitutive relation, a sufficient 

condition for strict convexity is: 

 ( )
0

max
c

c
cx

r x H
≥

σ′′> ψ = =
δ

 (39) 

Its graphical interpretation is straightforward on figure 3 in the case of pure mode I without 

unloading. 
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Sketch of the proof. 

The indicator function is convex and does not need special attention. Regarding convexity, the 

penalty term can be reduced to a quadratic function of eqδ  (let us denote ( )Neqδ = δ  for what 

follows). At last, the following property is applied, stating that a function g N�  is strictly convex if 

N  is strictly convex (yes), g  strictly increasing (yes with 0r > ) and g  strictly convex (yes as soon 

as cr H> , hence (39)). 

From now on, it is assumed that (39) is satisfied. Then, the function between brackets in (36) is also 

coercive and semi-lower continuous, hence ensuring existence of a minimum. Finally, there exists a 

unique minimum if cr H> . 

 Let us now focus on the numerical integration itself, that is the solution of (37) for a given value 

of � �r= +τ λ u , i.e. the input quantity of the constitutive law. Thanks to the existence and 

uniqueness of the solution, it is interesting to take advantage of the characterisation (36) in terms of 

subgradient, the expressions of which are given in (32) to (35). Solving the problem in each case, 

four alternatives are retrieved: 

– ( )if 0 and 0c

+
′κ = ≤ σ = ψτ   : perfect adhesion 

 0=δ  (40) 

– if 0 and r
+

κ > < κτ : crumpling  

 
r

+=
τ

δ  (41) 

– ( )if 0 and r r
+

′κ > κ ≤ ≤ κ + ψ κτ : unloading 

 +

+

= κ
τ

δ
τ

 (42) 

– ( )if r
+

′κ + ψ κ < τ : damage 

 ( ); solution ofeq eq eq eqr+
+

+

′= δ δ ψ δ + δ =
τ

δ τ
τ

 (43) 

Actually, the distinction whether 0κ =  or not is unnecessary since (40) appears as a special case of 

(42). 

 In conclusion, expressions of the solution δ  (output of the constitutive law) are provided in (40)-

(43) as functions of the input � �r= +τ λ u . They correspond to the different regimes of the 
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constitutive law. No numerical approximate solution is required, since the only equation to solve, in 

(43), is piecewise linear. 

3.3 Numerical validation by comparison to a closed-form solution 

 To validate the implementation of both the mixed finite element and the cohesive constitutive 

law, a test problem is proposed which admits a closed-form solution. It consists of an elastic beam 

clamped at one end, submitted to a prescribed tension displacement (no bending) and glued on a 

rigid plane surface, see figure 4a. The glue is modelled by the Talon – Curnier law reduced to mode 

II. The description of the problem is one dimensional. Three areas are observed which move with 

increasing prescribed displacement and correspond to perfect sticking (no debonding), a cohesive 

zone and a free surface (zero cohesive force). 

 As the loading displacement is monotonous, no local unloading is expected. Therefore, the 

displacement of the membrane is a minimum of the following energy: 

 ( )
( )

( ) ] [( ) ( ) ( ){ }

2

00

1

min
2

0 ; 0 0 and

L L

u KA U

ES du
dx u wdx

dx

KA U u H L u u L U

∈

 
  + ψ   

  

= ∈ = =

⌠ ⌠

⌡⌡  (44) 

where E  is the elastic stiffness, S  the cross section area, L  the beam length, w  its width, u  the 

(horizontal) displacement field, U  the prescribed displacement at the end of the beam and ψ  the 

cohesive energy (27) relying on the characteristic length cδ  and the fracture energy cG . To focus 

on significant features, the variables are normalised: 

 
( ) ( ) ( ); ; ; ; 2

2 2

with
2

c

c c c

c
c

uu U x L u
u U x L u u

D D G

ES
D

wG

ψ δ
= = = = Π = = −

δ δ

= δ

 (45) 

The minimisation problem (44) is then equivalent to: 

 ( )
( )

( ) ( ) ( ) ( ){ }

2

00

1

1
min

2

0 ; 0 0 and

L L

u KA U

du
dx u dx

dx

KA U u H L u u L U

∈

 
  + Π   

  

 = ∈ = = 

⌠ ⌠

⌡⌡  (46) 

The first order optimality conditions are necessary conditions for u  to be a minimum: 
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 ( ) ( ) ( ) ( )
2

1
2.

; 0 ; 0 0 ;
def

d u
u u C L u u L U

dx
 τ = ∈∂Π ∈ = =   (47) 

where τ  is the (normalised) cohesive force density, defined through the equilibrium equation. Note 

that the continuity of the derivative of u  is obtained thanks to the bounded character of the 

subgradient ∂Π , hence precluding any punctual cohesive force. On the basis of (32)-(35), the 

subgradient is actually equal to: 

 ( )
[ ]
( ){ }

{ }

1 1 if 0

1 sgn if 0 1

0 if 1

u

u u u u

u

 − =
∂Π = − < ≤
 ≥

 (48) 

One can recognize the graph of figure 2b. The solution is then composed of several branches on 

contiguous intervals with 1C  continuity. Each branch belongs to one of the possible regimes: 

– Perfect bonding 

 0u =  (49) 

– Progressive damage, i.e. cohesive zone 

 
( )
( ) ( )cos sin 1 for 0

, , 1
cos sin 1 for 0

u x A x B x u
A B u x

u x A x B x u

= + + >
∈ ∈ ≤

= + − <
ℝ ℝ  (50) 

– Complete decohesion 

 ( ) ( ), , 1u x Ax B A B u x= + ∈ ∈ ≥ℝ ℝ  (51) 

 In order to simplify the analysis, we assume from now on that the beam is sufficiently long, 

namely 1 2L U> − + π , and that the loading is high enough, i.e. 1U > . In that case, it is easy to 

show that there exists three areas, which correspond respectively to (49), (50) and (51), from left to 

right. Thanks to the 1C  continuity and the boundary conditions, the constants can be determined, 

leading to the following expression, with b  the length of the beam yet left unaffected by 

decohesion: 

 ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0 0

1 ; 1 cos cos
2 2

0
2

x b u x x

b L U b x b u x x b x x b

b x L u x x L U x

 ≤ ≤ = τ =


π π= − − − ≤ ≤ + = − − τ = −


π + ≤ ≤ = − + τ =

 (52) 
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As can be observed, the cohesive force density τ  belongs to the space 2L  but it is not continuous at 

x b= . 

 The couple ( ),u τ  is one possible solution of the problem (47). In order to enhance the potency 

of the test case, a sufficient condition for the strict convexity of the energy in (46) is exhibited, so 

that ( ),u τ  is actually its only minimum. First, the normalised energy in (46) is rewritten as: 

 ( )

( )

( )

( )fr
el

2 2
2 2

0 00 0

JJ

1 1

2 2 2 2

LL L L

uu

du du
dx u dx u dx u u dx

dx dx

 β β     + Π = − + Π +             

⌠⌠ ⌠ ⌠
  ⌡ ⌡⌡ ⌡

��������������������

 (53) 

where 0β >  is a parameter left undetermined. The idea consists in taking advantage of the 

convexity of the strain energy to compensate the lack of convexity of the fracture energy. Thus, the 

first term elJ  is a quadratic form. Its convexity is related to its positiveness; computation of the 

Rayleigh quotient shows that elJ  is convex as soon as 2 2Lβ ≤ π  (first eigenvalue). The convexity 

of the second term frJ  is established by considering its integrand: thanks to the expression (45) for 

Π , frJ  is strictly convex as soon as 1β > . Consequently, the energy is strictly convex and its 

minimum unique if 2 21 L< π , that is L < π. 

 A computation of the beam is performed with 1.5U =  and 1 2L Uπ > > − + π , so that ( ),u τ  

defined in (52) is the unique solution to (46). The mesh size is set such that 25 finite elements 

discretise the cohesive zone (of normalised length 2π ), while the penalty coefficient is taken equal 

to 100 100cH× = . The results plotted in figure 4 are in good agreement with the solution (52), even 

though oscillations of the Gibbs type are observed around the discontinuity of the cohesive force. 

Although the area over which they spread goes to zero in length with mesh refinement, they do not 

vanish in amplitude (2L  but not pointwise convergence). In conclusion, the implementation is 

validated. Questions of convergence are the purpose of the next section. 

4. NUMERICAL APPLICATIONS 

 The section aims at demonstrating the capacities of the mixed interface finite element. Two 

structures are studied. The first one is bidimensional in order to enable an analysis of convergence 

rates with mesh refinement. The second one is qualitative and illustrates the contributions of the 
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interface elements in 3D. The numerical simulations have been performed with the open source 

finite element software Code_Aster [42].  

4.1 Measure of convergence rates 

4.1.1 Test problem 

 Several questions have been raised in the mathematical study: convergence of the displacement 

field and of the cohesive forces with respect to mesh refinement, sensitivity to the penalty term and 

its influence on the solution algorithm. Some numerical investigations are led in this sense. They 

are based on the numerical study of sandwich beams the interface of which obeys the Talon – 

Curnier law, see figure 5a for the geometry and the material parameters. In order to avoid that the 

convergence rates be polluted by possible singularities, a very smooth loading is applied, so that the 

optimal theoretical convergence rate ( )2O h  in elasticity (with h  the size of the quadratic triangles) 

is almost reached: indeed, the observed numerical convergence rate for the stress field is ( )1 92O h .  

in elasticity (i.e. without any interface). More precisely, the loading consists in the following body 

force b : 

 
( ) ( ) ( )(1) (0) 3, 2 , 0.08 , (in N/mm )

0 1 ; ;

x y b x y b x y

L x L h y h

 = γ + 

≤ γ ≤ − ≤ ≤ − ≤ ≤
x yb e e

 (54) 

where γ denotes the load magnitude, (0)b  the unit vertical part corresponding to a “three point 

bending” and ( )1b  the unit horizontal part corresponding to torque at both ends, as pictured in red in 

figure 5a. Their expressions are given below and represented in figure 5b for the right part of the 

beams (symmetry): 

 

( )

( )

(0)

(1)

, 1 tanh sin 1 tanh sin

2
, 1 tanh sin

x y L x y
b x y

h h h h

L x y
b x y

h h

  π −  −  π
= − − −   
   

 −  π
= − 

 

 (55) 

 Thanks to the symmetry, only one half of the structure (right) is computed. The global response 

of the structure is plotted in figure 6b in terms of the vertical displacement of point P (top right in 

figure 5a) versus the loading magnitude γ ranging from 0 to 1. A regime of initiation, followed by 

an instability (crack jump) and then a progressive propagation of the interfacial crack can be 

observed. The stress field (longitudinal and shear) for 1γ =  is plotted on the deformed geometry in 
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figure 6a, where the crack is apparent. Finally, the cohesive forces are plotted in figure 6c. Three 

zones can be distinguished, from left to right: adhesion (undamaged), cohesive zone and fracture. 

On the contrary of the test-case in section 3.3, it appears that the cohesive forces are continuous, so 

that there is no more oscillations. 

4.1.2 Convergence with respect to the mesh size 

 In order to estimate the convergence rates, a sequence of meshes is built, each one being 

embedded in the former, with element size twice smaller. Five levels of meshes are considered to 

measure convergence rates, see figure 5c for an illustration of the two first levels (in red and black). 

As no closed-form solution is available for the problem, the convergence rate is estimated by 

comparing two successive solutions. Consider for instance the sequence of solution stress fields nσ , 

with n  the level of mesh refinement ( 0 2 n
nh h −=  is the corresponding size of the finite elements). 

Then the following estimate is used: 

 ( ) ( )1
s s

n n n n nO h O h∞ +σ − σ = ⇒ σ − σ =  (56) 

The gaps between two successive solutions are plotted in figure 7a and figure 7b, respectively 

( )21n n L+ Ω
−σ σ  for the stress field and ( )21n n L+ Γ

−λ λ  for the cohesive force field. In both cases, the 

convergence is observed. The convergence rate s  is equal to 1.9 for the stress field: the mixed 

interface finite elements do not introduce any degradation of the convergence compared to the 

elastic problem. And the convergence rate for the cohesive force is equal to 1.15. These results are 

in reasonable agreement with the theoretical propositions in [18], thanks to the fulfilment of the 

LBB condition. 

4.1.3 Influence of penalty 

 In order to show that the solution does not depend on the penalty parameter r , at least 

asymptotically, three values of r  have been considered: { }10 , 100 , 1000c c cr H H H∈ =� , 

where cH  is the softening modulus introduced in (39). We recall that the penalty term reads: 

 � �( )2

2r

r
P d

Γ

= − Γ⌠

⌡

u δ  (57) 

The convergence of the penalty term with the mesh size is showed in figure 7c: it vanishes with 

mesh refinement. It proves that the space for the Lagrange multiplier is rich enough to ensure alone 
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fulfilment of the constraint � �=u δ . Indeed, the maximal gap between solutions obtained with 

different penalty parameters in the sampling set �  also goes to zero with mesh refinement, see 

figure 7d: 

 

( ) ( ) ( )

( ) ( ) ( )

2

2

max 0

max 0

n n nLr
r

n n nLr
r

r r

r r

→∞Ω∈
′∈

→∞Γ∈
′∈

′− →

′− →

σ σ

λ λ

�

�

�

�

 (58) 

It means that the sensitivity with respect to the penalty parameter vanishes with mesh refinement. 

 However, the penalty parameter may have an influence on the convergence of Newton 

algorithm, as shown in figure 8. Actually, the use of a line-search technique has been necessary to 

enforce the convergence of the algorithm with 1000cr H= . On the contrary, we have observed that 

the line-search slowed down the convergence for 10cr H= , in particular for the finest mesh. 

Finally, it appears that using the intermediate value 100 cr H=  results in a rather stable 

convergence whatever the mesh size and is not perturbed by the line-search (which could reveal 

necessary to overcome possible instabilities). It is difficult to generalise the proposition. 

Nevertheless, it seems that 100cr H=  introduces a sufficient level of coercivity in order to avoid 

that Newton algorithm escapes its attractor, without resulting in ill-conditioned problems. 

Additional simulations would be necessary to confirm this rule of thumb. 

4.2 Application to a 3D structure 

 Finally, the study of a 3D structure is performed to demonstrate the full applicability of the 

mixed interface finite element. As previously, the structure is made of glued sandwich beams, as 

described in figure 9, where the interface is described with the Talon – Curnier law. The loading 

consists in bending prescribed displacements in two directions. More precisely, the left end of the 

upper beam is free, its right end is clamped except for the longitudinal displacement which must 

remain a constant field along the cross section, the value of which is free: 

 ( ) ( ) ( ) ( )upper beam : , , , , 0 ; , , 0 ; , , 0
u u

L y z L y z v L y z w L y z
y z

∂ ∂= = = =
∂ ∂

 (59) 

The special condition on u  sets the rotation to zero but enables a longitudinal displacement in order 

to limit xzσ  shear. The right end of the lower beam is free, while its left end is totally submitted to 

prescribed displacements: 
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 ( ) ( ) ( )lower beam : 0, , 0 ; 0, , 1mm ; 0, , 1mmu y z v y z w y z= = γ× = γ×  (60) 

where γ denotes again the normalised load magnitude. Actually, the vertical bending is expected 

stable because of contact conditions (a sudden fracture of the interface does not release the amount 

of elastic energy since the beams remain partially bent). On the contrary, the horizontal bending is 

expected unstable because the beams are free to retrieve their straight shape in this direction in case 

of total fracture of the interface. Therefore, the chosen loading is thought to trigger the following 

features: active contact conditions along a moving surface, coupled shear – opening fracture modes, 

full 3D mechanisms resulting in non straight cohesive zones inside the interface plane and a final 

global instability of the structure. 

 The spatial discretisation of the beams is based on quadratic regular hexahedra of edge length 

6.25 mm. The interface is discretised by means of the corresponding mixed interface elements. It 

results in about 300 000 degrees of freedom, which makes the structure realistic and representative 

of real industrial problems. The penalty parameter is set to 100 cH  on the basis of the experience 

acquired in section 4.1. Regarding the loading conditions, a monotonous control of the magnitude γ 

is not possible because of the expected instability. To avoid a dynamic simulation, a path following 

method is applied, as proposed in  [43]. γ is controlled so that during each increment, the damage 

(i.e. the normalised cohesive energy cGψ ) progress at most of a given quantity set equal to 0.1 in 

the simulation. It means that for each increment, there exists a point of the interface where the 

damage increases of 0.1; elsewhere, the damage increase is less than 0.1. The computation is led up 

to complete fracture of the interface. 75 load increments are required, each of them with 4 Newton 

iterations in average: the convergence of the solution algorithm is satisfactory, both in stable and 

unstable regimes. 

 The global response of the structure figure 10 shows the expected phases: progressive damage of 

the interface followed by an unstable propagation up to complete failure, characterised by a sharp 

snap back of the force – displacement curve. It should be noted that no small spurious snap-backs 

appear, on the contrary of what is observed with usual interface elements [43,44]. Actually, 

embedded discontinuity finite elements do not either exhibit such spurious snap-backs [41]. 

Therefore, it seems reasonable to relate them to the penalty regularisation of initial adhesion, 

another reason to enforce perfect initial bonding. Two load levels are selected for the oncoming 
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post-treatments: one during the progressive propagation ( 1γ ≈ , stage A on the curve), the other 

corresponding to the peak load ( 2.9γ ≈ , stage B on the curve). 

 The deformed shape and the longitudinal stress xxσ  representative of bending are pictured in 

figure 11a. They illustrate the distribution of stress responsible for the decohesion: the free ends of 

the beams tend to retrieve their straight shapes (minimal elastic energy) and thus apply shear and 

opening forces on the interface. Moreover, the contact of the lower beam on the upper beam 

enforces a global (vertical) bending, whatever the state of the interface. The damage field along the 

interface cGψ  is plotted in figure 11b. Thanks to the exact enforcement of initial adhesion and 

ultimate decohesion, a clear identification of the cohesive zone is possible as the points where 

0 1cG< ψ < . It appears that the crack front adopts a complex shape which evolves during 

propagation, due to 3D effects. At last, figure 11c pictures the proportion between opening and 

shear modes inside the cohesive zone on the basis of the following local indicator: 

 
2

//
2m
+

=
t

t
 (61) 

The indicator takes the value 0 for pure opening mode and 1 for pure shear mode (with possible 

compression). Of course, a value in-between denotes a combination of both modes. It appears that 

the full range of solicitations takes place in the simulation, even though shear mode is dominant, 

especially when the peak load is reached. 

 Finally, this 3D simulation seems to prove that mixed interface finite elements are sufficiently 

robust to address industrial applications and provide several kinds of pertinent information about 

the fracture process. 

5. SUMMARY 

 A mixed interface finite element has been proposed to model cohesive zones along given paths, 

in full compatibility with usual 3D finite elements for the bulk behaviour. Its unknowns are nodal 

displacements on both lips of the cohesive crack and nodal Lagrange multipliers, interpreted as the 

surface density of cohesive forces. The Lagrangian of the problem is then augmented in order to 

gain a convexity property. In that way, integration of the cohesive law is reduced to the computation 
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of local displacement discontinuities corresponding to local cohesive forces, a problem that admits a 

unique solution, whatever the cohesive forces. 

 In conclusion, this approach suffers from the following limitations and drawbacks: 

• Because the method relies on interface elements, the potential crack paths have to be postulated 

a priori. 

• Additional degrees of freedom are introduced, corresponding to the cohesive forces. However, 

their number remains low since they are restricted to the potential crack paths, which are 

surfaces (resp. lines) in 3D (resp. 2D). 

• The introduction of Lagrange multipliers leads to a mixed problem: the solution is characterised 

as a saddle-point and no more a minimum as in the initial energetic formulation. Consequently, 

some tools of mathematical optimisation are no more available to solve the problem. 

• The Lagrangian has to be augmented in order to gain a local convexity property. This implies 

the introduction of a penalty parameter, without sensitivity for the continuous problem but 

which may affect the results of the spatially discrete problem. Nevertheless, this dependence 

vanishes with mesh refinement. Moreover, the numerical examples show that this sensitivity 

remains small. 

• The local integration of the constitutive equations relies on the expression of the cohesive law in 

the reverse format [cohesive forces → displacement discontinuity], which is unusual when 

considering interface elements. 

Conversely, the limitations and drawbacks are counterbalanced by the following attractive 

properties:  

• No regularisation (penalty) of the cohesive law is required, regarding namely initial adhesion, 

contact conditions and possibly rigid unloading. In particular, this avoids ill-conditioning. It is 

illustrated by an application to the Talon – Curnier cohesive law which exhibits regimes of 

perfect adhesion, rigid unloading and crumpling.  

• The choice of a quadratic discretisation for the displacements and a linear discretisation for the 

Lagrange multipliers fulfils the LBB condition. In turn, it ensures convergence of the solution 

with mesh refinement in terms of displacements and cohesive forces, as checked numerically.  
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• The convergence rates that would be obtained without any interface is not perturbed by the 

presence of mixed interface elements.  

• Thanks to the saddle-point characterisation, the consistent tangent matrix is symmetric.  

• The proposed element is fully compatible with common solution algorithms such as the Newton 

method, line-search accelerations, path-following techniques, etc. This has been proved through 

2D and 3D computations which demonstrate the applicability, the robustness and the efficiency 

of the mixed interface element.
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