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Abstract

Process synthesis methods enable the determination of unit operations and their interconnection into
a process �owsheet, with associated design and operating parameters, and responding to given objec-
tives. Modern methods are optimization-based, using for example Mixed Integer Non-Linear Programming
(MINLP) formulation to optimize a process superstructure. Finding an adequate de�nition of the search
space is a non-trivial problem in such approaches, especially when the number of possible combinations is
high due to the process complexity, and is mostly driven by expertise (e.g. heuristics). Consequently, an
inductive bias is intrinsically introduced due to restriction of a limited search space, such as the choice of a
superstructure representing a limited set of process alternatives.

In this work, an evolutionary method is proposed to generate several process architectures based on
a set of available unit operations (and associated models) as elementary building blocks. The procedure
is here calledab-initio process synthesis since it does not require any pre-de�ned process structure. The
developed method relies on the use of an Evolutionary Programming (EP), mimicking natural evolution at
species-level, for the automatic construction of a process by using mutation operators to choose, assemble
and connect elementary building blocks (i.e. unit operations). A Non-Linear Programming (NLP) is used
for process evaluation, by simultaneously solving balances and optimizing process degrees of freedom.

The method is implemented in a newly developed tool calledPSEvo (Process Synthesis by Evolution).
An application to a typical reaction-separation problem is presented, using various problem de�nitions and
evolution control parameters, which demonstrates the method capability to generate optimal processes. The
possible uses and the challenges ofab-initio process synthesis are �nally discussed.

Keywords: process systems engineering, process synthesis, evolutionary programming, optimization,
reaction-separation

1. Introduction and motivation

Process synthesis is the procedure of process generation used to select a set of unit operations (transforma-
tions of mass and energy), interconnected in a network (process �owsheet) �together with associated design
and operating parameters� and optimizing given objectives that could be economic, environmental and/or
societal. Such a procedure can be performed by applying various systematic techniques, referred as Process
Systems Engineering (PSE) or (global) Process Intensi�cation (PI) methods [1, 2]. Possible techniques for
process synthesis include heuristics (especially using experience and expertise) and decomposition-based
[3, 4, 5] on one hand, and optimization-based [6, 7] methods on the other hand. For details on process
synthesis methods, see dedicated books and review articles [3, 7, 8, 9, 10, 11, 12], only a short review is
provided here to highlight the synthesis challenge addressed in this paper.

Decomposition approaches are able to propose e�cient processes, but do not guarantee an optimal
process since the interactions between di�erent levels of decomposition (e.g. reaction, separation, heat
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2 AB-INITIO PROCESS SYNTHESIS METHOD 2

Table 1: Brief overview of process synthesis approaches
Class of approaches Process synthesis Methods Ref.
Decomposition Heuristics, expertise and experience Hierarchical [3]

Onion models [4]
Optimization Superstructure based on process units MILP, MINLP [11, 7]

GDP [14, 15]
Superstructure based on phenomena or tasks MINLP [24, 25]
Ab-initio , no superstructure is assumed EP+NLP this study

integration) are not considered [13]. Optimization-based methods allow to rigorously model and search for
an optimal solution within a de�ned search space, optimizing the selected performance objectives. They
rely mainly on mathematical formulations such as generalized disjunctive programming (GDP)[14, 15], or
mixed integer non-linear programming (MINLP) [7, 11], which can be solved by a large panel of techniques
[11, 15, 16, 17, 18, 19]. Noticeably, other approaches focusing mainly on Process Intensi�cation explore
beyond the concept of unit operations and optimize a process at the phenomenological or functional level
rather than at the equipment level [20, 21, 22, 23, 24, 25] For a complete overview of optimization-based
process synthesis, see for example the recent review of Chen and Grossman [26].

Whatever the mathematical approach in Process Systems Engineering, the �rst step is to postulate a
set of alternatives represented by a process superstructure, including process unit operations of interest
and foreseen interconnections [11], Chen and Grossman point out that �limitations here arise in our ability
to de�ne an appropriate search space�[26]. This initial step could be a di�cult task when the number of
possible combinations is high due to the process complexity. Counter-intuitive, yet relevant, solutions could
also be missed during the process synthesis procedure.

The challenge addressed in this paper is the possibility of performing optimization-based process synthesis
without postulating any superstructure (see the Table 1). The ambition is to avoid the subsequent bias due
to the restriction of the space search to a set of possibilities. This approach is called hereab-initio process
synthesisas a parallel from other �elds such as optic [27] where similar design problems occur; theab-initio
term is also used in chemical engineering for thermodynamic properties calculations [28]. This approach
could also be referred as "superstructure-free" in building design[29].

This paper presents a new generic method for process synthesis that does not require the preliminary
de�nition of any set of alternatives, hence mimicking the whole mechanism of process creation and evaluation.
The method is presented in section 2; it relies on the combined use of an Evolutionary Programming
(EP) algorithm for automatic construction of process �owsheet, and of a Non-Linear Programming (NLP)
algorithm for process evaluation. This hybrid optimization strategy works without any superstructure, given
a set of available unit operations as elementary blocks assembled through mutation operators by the EP, and
an objective function optimized by the NLP. The method is illustrated in section 3 for a reaction-separation-
recycle system; the benzene chlorination process from Kokossis and Floudas [30] is chosen to confront the
method presented in this paper to their MINLP optimization of a superstructure. Finally, the possible uses
and the challenges ofab-initio process synthesis are discussed in section 4.

2. Ab-initio process synthesis method

2.1. Method overview
The goal of the presented method is to achieve process synthesis without assuming any superstructure,

using a set of available unit operations as elementary blocks to build a process �owsheet. The method
was developed by trying to transpose the remarkable work of Lipson and Pollack [31] on robotic design in
chemical engineering domain. Theyab-initio designed robotic lifeforms by evolution from basic building
blocks (bars, joints, actuators, arti�cial neurons) and using a physical simulator for the evaluation of robot
�tness (locomotive ability) [31]. In this work, the philosophy is kept whereas the speci�cs are adapted to
the chemical engineering �eld; instead of bars connected by joints to describe a robot, a process �owsheet
is described by unit operations connected by streams.
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The process synthesis method is schematized in Figure 1, and is implemented in a newly developed tool
called PSEvo (Process Synthesis by Evolution). The method works on two levels combining the use of an
Evolutionary Programming (EP) algorithm for automatic construction of process �owsheet, and of a Non-
Linear Programming (NLP) algorithm for process evaluation. The EP is applied on the upper level as a
construction tool by choosing, assembling and connecting unit operations into a process �owsheet (see section
2.2). Each process is then evaluated by the NLP on the lower level by solving heat and mass balances (see
section 2.3) and optimizing an objective function with respect to the process degrees of freedom (e.g. design
speci�cations, operating parameters). The way to de�ne a new process synthesis problem (i.e. application
speci�cs) is described in Ÿ2.4, and method implementation in Ÿ2.5.

Case 
set-up

Solution

Definition of process synthesis problem
Task-specific dynamic library

Modules pool
For each module :
    • Inlet and outlet connectors
    • Parameters
    • Relation streams out 

      = f(streams in , param.)

etc.Etc.
Heat exchanger

Plug flow reactor

Mixer

Description of streams
No. of stream variablesFi,out  = Fi,in

2 inlets, 1 outlet

Cost = ...

Evolutionnary synthesis
Automatic construction of process flowsheet

Process evaluation
Objective function optimization

process
flowsheet

evaluation
process
fitness

selection
mutation

stopping
criteria? replacement

Modules types
and their connectors

(for mutation)

Modules models
+ No. of stream variables

+ Objective function

Convergence analysis

Nonlinear programming solver
Determine degrees of freedom and

solve tear streams (unfeasible path)

Objective function
calculation

Optimization problem set-up
• Tear and sequence process
• Formulate the NLP problem

• Generate multiple initializations

Figure 1: Overview of PSEvo architecture, see sections 2.2 and 2.3 for details respectively on Evolutionary synthesis and process
evaluation procedures

2.2. Evolutionary synthesis

The evolution procedure is responsible for the construction of a process �owsheet given elementary blocks
(unit operations), an Evolutionary Programming (EP) method is here employed to do so. Evolutionary
Programming [32] is part of a wider category of nature-inspired methods called Evolution Algorithm (EA)
[33, 34], which includes: genetic algorithms (GA), evolution strategy (ES), evolutionary programming (EP),
and genetic programming (GP) methods. EP di�ers from other EA methods in that mutation is the only
evolution driver. The crossover operators used in other EAs are not used in Evolution Programming, new
candidate solutions are generated by exclusively applying mutation operators on existing candidate solutions.
Metaphorically speaking, Evolutionary Programming mimics natural selection by focusing on the level of
the species (phenotype) and not the level of single individuals (genotype) [35].

In chemical engineering, the use of Evolution Algorithms for process synthesis is common [36, 18, 16, 37],
mostly by using Genetic Algorithms, and used to optimize a superstructure with the intrinsic bias already
mentioned, limiting the search space to a set of alternatives. In this work, by using an Evolutionary
Programming method to build a process from elementary blocks (unit operations), the search space is
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virtually in�nite and not restrained by a �xed-size representation. So far, processes have been generated
with up to 100 building blocks on dummy cases, such as maximizing the e�ciency without limitations on
the number of unit operations. For real cases, limitations appear because the number of building blocks
is penalized, usually in the form of a capital cost for additional blocks or increased network complexity.
These sorts ofparsimony principle arising from the de�nition of the Process Synthesis drivers is discussed
on section 4.2.

The general evolution procedure is pictured in Figure 1 ('Evolutionary Synthesis' part), allowing to
generate and propose �owsheet architecture by itself. The EP algorithm is summarized as follows:

1. Initialization
a) Assign evolution parameters (default or user-supplied): mutation rate (� ), number of individuals

(N ind ), mutation operators probabilities ( padd ; premove ; ppermut ), selection and replacement methods
b) Determine the initial �owsheet (default or user-supplied) and evaluate its �tness (process evaluation)

2. Main loop
a) Pick individuals in the population (selection method)
b) Mutate them using mutation operators
c) Evaluate them (process evaluation)
d) Pick individuals in the population (replacement method)
e) Replace these individuals by the mutants
f) Increase the generation counter and display current best �owsheet and �tness progress
g) If a stopping criterion is reached, exit main loop

3. Results
Save all data and generate the report with evolution steps, phylogenetic tree and best individuals

The initial population is typically a simple 'empty' �owsheet (a feed connected to an outlet), but could
also be any �owsheet de�ned by the user if required. The stopping criterion can be a maximum number
of generations and/or a number of consecutive generations without improvement of the objective function
value. Usual selection and replacement methods can be: random uniform, linear or exponential rankings
(probability of choice is linearly or exponentially based on process rank), or �tness-proportionate (probability
of choice is based on process �tness). The impact on the choice of selection and replacement methods on
the convergence is discussed in the case study. Mutation operators are detailed in the next paragraph , and
process evaluation (�tness calculation) in Ÿ2.3.

2.2.1. Mutation operators
Since the evolution is only driven by mutation, the key aspect is the de�nition of the mutation operators,

so that every process can be obtained from scratch by the application of a sequence of mutation operators.
Given a set of elementary building blocks (types of unit operations), mutation operators must be able
to assemble them into a �owsheet, while remaining as simple as possible to minimize the inductive bias
associated to their de�nition.

Three elementary mutation operators are used in this work: addition of a block (type of unit operation)
between two existing blocks, removal of an existing block, permutation of two streams. See the Figure 2 for
details and example.

Using these three simple building rules, any process �owsheet can be created by exploring the possible
sets of unit operations (addition and removal operators) and their interconnections (permutation operator).
During the mutation step of the evolutionary synthesis, one or several mutation operators are applied with
respect to prede�ned probabilities (see default parameters in Ÿ2.5), at least one mutation needs to be applied.

2.2.2. Connectivity rules
During the mutation step, unconnected inlets and outlets can appear. This type of situation occurs if

a unit with a di�erent number of inlets and outlets is added or removed. It is particularly illustrated on
Figure 2 with the addition of a mixer -a block with two inlets and one outlet- leading an unconnected inlet.
Such structures are inconsistent since each connector (inlets and outlets of every block) needs to be linked
to another block, which is here circumvented by connectivity rules.
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Figure 2: The three elementary mutation operators used during evolution for the construction of a process �owsheet

Firstly, it is checked if other non-linked connectors exist on another unit operation. If this is the case,
a new stream is added to connect them. By security, the outlet of a unit operation can not be linked to
one of its inlet, to avoid auto-loops. If several non-linked connectors are available, one of them is randomly
selected. Secondly, non-linked connectors could remain. If a block has non-linked outlet connector, it is
connected to an additional 'process out' block. Similarly, if a block has a non-linked inlet connector, it is
connected to an additional 'Null feed stream' block, i.e. a virtual feed with null stream. A cleanup is also
performed to remove useless structures such as a 'Null feed stream' block connected to a 'process out' block.

The �rst step enables to connect as many unit operations as possible, before adding additional unit
operations in the second step to ensure complete process connectivity. These connectivity rules are applied
at the end of the mutation step, after the application of mutation operators, and ensure that the process is
valid from the connectivity point of view and is suitable for process evaluation.

2.2.3. Process representation (phenotype)
Whereas the evolutionary programming algorithm is generic and resembles to the one of Lipson and

Pollack[31], the mode of candidate representation is domain speci�c and should be able to reproduce the
candidate phenotype. Here, a process �owsheet is represented by the following elements:Nu the number of
unit operations; Ns the number of streams connecting the units;IM the incidence matrix (size Ns � Nu )
detailing the connectivity between units and streams; T a string vector (size Nu ) of unit types; and M a
logical vector (sizeNu ), 'true' meaning that the unit is mandatory.

The number and types (e.g. Feed, Reactor) of unit operations are de�ned byNu and T, their intercon-
nections into a network by Ns and IM . The M logical vector indicates if the unit operation is mandatory
in the process �owsheet and cannot be removed by the evolutionary synthesis procedure, this vector is par-
ticularly useful if the user wishes to impose certain blocks in the process, such as at least a reactant feed
and a process outlet. The unit can yet be placed in a di�erent order in the process, particularly by the
application of the permutation operator.

During evolution, mutation operators act by simply modifying the process phenotype. For example, a
block addition or removal a�ects the sizes and content of vectors and incidence matrix; stream permutation
switches elements in the incidence matrix. The connectivity algorithm also a�ects the units and/or the
unit operations. An example of process representation (phenotype) before and after the application of a
mutation operator and the connectivity algorithm is provided in supporting information.

Within this framework, process feeds and outlets must be considered as unit operations, their impact
on the process performance (such as reactant consumption, product sales, energy) is taken into account
through calculated parameters of each unit operation.
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2.3. Process evaluation

The role of the process evaluation is to get the �owsheet representation (phenotype) from the evolutionary
synthesis procedure, and compute the �tness function (see Figure 1). To do so, the process balances (heat
and mass, including possible recycles) need to be solved in order to calculate and optimize the objective
function (process �tness). The corresponding mathematical problem is automatically constructed from the
process phenotype, and is formulated as a classic Non-Linear Programming (NLP) optimization problem:

8
>>>><

>>>>:

max Fobj (z)
s:t : g(z) � 0

h(z) = 0
t (z) = s � �s (z) = 0
z 2 [zl ; zu ]

(1)

with

� z the set of optimization variables zT = [ xT ; sT ]
� x the set of decision variables (process degrees of freedom, for example the design variables of unit

operations such as the volume of a reactor)
� s the set of (guessed) tear variables.g and h constraints are (optional) process design inequality and

equality constraints, such as limitations on temperature or pressure, minimal production, desired purity
and so on

� t (z) the set of tear equations ensuring that the recycle equations are satis�ed, i.e. the di�erence between
s and the calculated tear stream variables�s (z) from the current guesss and decision variablesx. �s is
obtained by sequentially calling the unit operations models.

In case of non-convergence of heat and mass balances, i.e. thet (z) tear equations are not equal to zero,
the process is considered non-viable and an arbitrary large negative value (or positive in case of minimization)
is a�ected to Fobj . The tearing algorithm of Roach [38] is used here to select a set of tear streams, and
hence to determine the calling sequence.

An unfeasible pathapproach [39] is used here since the �owsheet convergence is dealt during the opti-
mization. Such an optimization problem can be solved by a NLP code, for example by using a Sequential
Quadratic Programming (such as SLSQP [40] or NLPQLP [41]) or an interior-point method such as IPOPT
[42]. Since the NLP codes are gradient-based method, a typicalmultistart approach is used to limit the
risk of �nding a local minimum. A set of di�erent initialization of z is randomly generated in the domain,
and the NLP is launched for each of them. The parametric domain is de�ned by the user, which provides
lower and upper values for each optimization parameter (and optionally an initial guess, which is used in
addition to the random sampling). The number of sampling points is either �xed by the user, or taken
arbitrarily equal to the number of unit operations in the currently evaluated process. In the end, the best
solution respecting all constraints is kept So far, it has been observed that the same optimum is found with
the various initialization when convergence is reached; this option is still kept for future investigation.

2.4. De�nition of process synthesis problem

For each process synthesis problem, i.e. for a new application, the user needs to de�ne the following
task-speci�c elements:

� A pool of unit operations, de�ning for each one:
- the name of unit operation type (e.g. heat exchanger, reactor, reactant feed),
- the number of inlet and outlet streams (connectors),
- the inlet parameters (i.e. unit operation degrees of freedom such as design speci�cations),
- the calculated parameters (e.g. capital cost, energy),
- the relation giving the outlet streams and calculated parameters as a function of inlet parameters and

inlet streams (i.e. the unit operation model),
- the potential constraints to be respected (e.g. maximum temperature, product purity in the outlet).
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� A description of stream: number of variables used to represent a stream (e.g. temperature, pressure,
�owrate, composition)

� An objective function calculation (e.g. total energy consumption, process annualized cost), computed
from the calculated parameters of the di�erent unit operations

The evolutionary synthesis procedure only uses the name of unit operation type, to distinguish the
di�erent types of module, and the number of inlet and outlet streams, to connect them into a �owsheet.
The process evaluation procedure uses all the elements to de�ne and solve the optimization problem.

In the end, the approach adopted here by �eld transfer from robotic to chemical engineering, has a similar
philosophy than the one developed by Voll et al. [43] on energy supplied systems and extended by Wang et
al. [44] on thermal power plants. In their work, they used six "knowledge-integrated mutation operators"
that are application-speci�c, and the process needs to be hierarchically decomposed into meta, function and
technology levels, meaning that mutation operators and process representation needs to be conceptualized
for each new synthesis problem. The approach presented here is believed to be more generic since the process
description and mutation operators do not depend on the studied system. For a new synthesis problem, the
user only needs to de�ne the elementary blocks (pool of unit operations), stream description, and objective
function.

2.5. Method implementation: PSEvo

The presented method is implemented in a newly developed tool calledPSEvo (Process Synthesis by
Evolution) , coded in Fortran 2008 in an object-oriented way. External libraries are used for speci�c tasks:
the SLSQP optimizer[45] as NLP solver, Graphviz[46] and Gnuplot[47] for on-the-�y plotting of process
�owsheets and objective function during evolution. Detailed information is generated in a synthetic HTML
report to examine the evolution results.

Each new process synthesis problem needs to be compiled into a dynamic library (see Figure 1) using
a given template, so that the user does only have to focus on de�nition of unit operations and objective
function. An example of the required data is provided in the case study and in the appendix.

By default, the evolution control parameters are the following: N ind =50 individuals (i.e. population
size); a mutation rate of 50% (� ); mutation operators probabilities of 5% for module addition and removal
(padd and premove ), 20% for streams permutation (ppermut ); random selection (before mutation); replacement
based on rank (after mutation); 100 successive iterations without objective function improvement as stopping
criterion. These parameters are discussed in section 3.4.

3. Case study with a reaction-separation-recycle system

The search of an optimal design for reaction-separation-recycle systems can be seen as global (process
scale) intensi�cation strategy based on �owsheet architecture improvement [2], and has been dealt in many
papers [e.g. 30, 48, 49, 50, 23]. This makes reaction-separation-recycle systems a relevant example to
validate the developed method and its implementation.

The benzene chlorination process from Kokossis and Floudas [30] is chosen as a case study. The idea is
to confront their optimization of a given superstructure to the ab-initio process synthesis presented in this
work.

The studied reaction is the benzene (A) chlorination to produce monochlorobenzene (B), with dichloroben-
zene (C) as a waste product. The mechanisms are simpli�ed into two �rst-order and irreversible reactions
(A ! B ! C)[30]. Reactions occur either in Continuous Stirred-Tank Reactors (CSTR) or Plug-Flow Re-
actors (PFR). The objective being to produce pure B, separators are required. The volatility ranking is
A>B>C, ideal distillation columns (100% purity) are used with the following possible separations: A/BC,
AB/C, A/B, B/C.
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Superstructure-based process synthesis Ab-initio  process synthesis (this work)
Definition of a superstructure

(here from Kokossis & Floudas)

Solved by Mixed-Integer Non-Linear Programming 
(MINLP)

Selection of the optimal structure 
among the predefined alternatives

Definition of available unit operations,
no superstructure assumed

Solved by Evolutionary Programming (EP)
and Non-Linear Programming (NLP)

Optimal structure generated by choosing, assembling and
connecting unit operations (search space is virtually infinite)

CSTR

PFR

Reactors 
(A � B� C)

Mixer and splitter

Distillation columns ( A> B> C)

B

C

A

B

C

A

B

C

A

feed
Pure A

out

Process feed and outlet

Unit operations = 
elementary building blocks

Figure 3: Di�erences in problem de�nition for the benzene chlorination case study. Left) one of the superstructure of Kokossis
and Floudas [30] (reproduced with permission of Elsevier), a set of alternatives is de�ned and a MINLP method selects the
optimal �ow path and associated degrees of freedom. Right) this work: de�nition of the ab-initio process synthesis. No
superstructure is assumed, the EP constructs the �owsheet from the available unit operations and the NLP determine the
optimal degrees of freedom, i.e. the best objective function obtainable for a given �owsheet.

3.1. Problem de�nition

Kokossis and Floudas [30] de�ned several superstructures to cover as many process alternatives as possi-
ble, combining the use of reactors (CSTR and PFR), ideal distillation columns (A/BC, AB/C, A/B, B/C),
mixers and splitters; cf. one of their superstructure on Figure 3 (left).

In this work, the problem de�nition is quite di�erent. Instead of de�ning a set of alternatives represented
by a process superstructure, only the available unit operations are de�ned. The evolutionary Synthesis
procedure picks into this pool of unit operations to build any process �owsheet; cf. the Figure 3 (right).
An 'empty' �owsheet, i.e. a 'Feed' unit (�owrate of pure A) connected to a 'Process Out' unit, is used as
an initial population. The objective here is to maximize the annualized pro�t, which includes capital cost
of unit operations, reactant costs, energy costs and product sales. Two cases are investigated to assess the
sensitivity of the optimal process to the objective function de�nition:

Case A. Maximize pro�t for a production of 50 kmol/hr of B, same capital cost for PFR and CSTR.

Case B. Maximize pro�t for a production of 50 kmol/hr of B, higher capital cost for PFR than for CSTR

Case A is slightly similar to case 2 in [30] by using the same capital cost for PFR and CSTR, except that
the objective function is to maximize pro�t instead of minimizing the annual cost. Case B is identical to
case 4(a) in [30]. Detailed equations for unit operations and objective functions are reported in Appendix.
The default evolution parameters of PSEvo are used (see Ÿ2.5).

3.2. Process synthesis results

The optimal processes found by PSEvo are displayed on Figure 4 for cases A and B, with associated
degrees of freedom (i.e. reactor volumes and reactant feed �owrate).
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Figure 4: Process synthesis results for cases A (same cost for CSTR and PFR) and B (higher capital cost for PFR)

In both cases, the optimized con�guration is based on a reaction part (CSTR in series or PFR), a �rst
distillation column A/BC, recycling of unreacted A using a mixer before the reaction part, and a second
distillation column B/C to separate the product B from the waste product C. The only di�erence is that
one PFR of 13.01m3 is used for case A, whereas three CSTR in series for a total volume of 13.91m3 are
used for case B (N.B. the three volumes are slightly di�erent due to the evolution of molar volume with
composition. If the molar volume would have been constant, the three volumes would be equal to maximize
the reaction conversion). Both feed �owrates are also similar: 51.07 kmol/hr for case A and 51.48 kmol/hr
for case B.

Not surprisingly, the use of a PFR instead of CSTR in series is chosen if they have the same capital
cost (case A), due to the higher conversion achieved with PFR for the same reactive volume. For case B,
3 CSTR in series are used to achieve a similar conversion but at a lower cost. During evolution, processes
with up to 5 CSTR in series were produced but not retained by the algorithm since they exhibit a lower
pro�t. Regarding the separation part, the use of A/BC separation before B/C separation is also logical.
Separating and recycling A before puri�cation of B leads to a lower �owrate entering the second distillation
column, hence a lower cost. Noticeably, both these structures were also obtained by Kokosssis and Floudas
based on the superstructure optimization.

3.3. Evolution path and convergence

To analyse how processes evolve to produce an optimal solution, the objective function (annual pro�t)
is plotted with generation on Figure 5 for Case B. The dots represents the objective function of the entire
population, and the red line the evolution of the best achieved objective function with generations. Objective
function rises by steps until convergence, process structures corresponding to notable evolution steps are
also displayed on Figure 5. Processes evolved from the initial 'void' structure (a) to the �nal process (f).
Successively, the algorithm added a PFR and a �rst distillation column (b), then replaced the PFR by a
CSTR and added a second distillation column (c), positive pro�t is then obtained by using 3 CSTR in series
(d). On step (e), a mixer is added to recycle unreacted A before the third reactor, leading to a substantial
gain in pro�t. Finally, the A recycle is positioned before the �rst reactor (f, optimal process). It should be
noted that processes (a) to (f) do not necessarily correspond to a mutation from one to another. �Good�
processes could emerge by modi�cation of an already interesting process (incremental improvement) or of a
non-pro�table one.

Due to the stochastic nature of the procedure, several optimizations should be systematically launched
to check that the optimal solution is independent of the optimization run. The Figure 6 presents the
optimization progress with four di�erent random seeds, using the same problem de�nition. For the four runs,
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Figure 5: Example of optimization progress for the benzene chlorination case, and process �owsheets of notable evolution steps
(case B)
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Figure 6: Optimization progress of four runs with di�erent random seeds (case B)

the same optimal process is found, but with distinctive evolution paths. Di�erent applications of mutation
operators can indeed lead to the same process structure, this non-exclusivity in �owsheet construction is
illustrated on the Figure 6.

3.4. Sensitivity to evolution control parameters

The evolutionary programming algorithm requires the speci�cation of various evolution parameters,
whose sensitivity is assessed here.

Selection and replacement methods
Since evolution is a random process driven by evolutionary pressure, at least one random method must

be kept, either for selection or for replacement. Three cases are considered:

1. Selection: random. Replacement: linear ranking
2. Selection; linear ranking. Replacement: random
3. Selection: random. Replacement: random

The third case (random-random) is basically a random search within the search space, both other cases
apply a selective pressure (linear ranking) during selection or replacement. An example of optimization
progress for three cases is presented in Figure 7, with a high number of generations (up to 1000). For each
case, 10 runs are performed with di�erent random seeds, the obtained median and interquartile range is
plotted with generations. Both methods applying a selective pressure converged in a limited number of
generations (around 50-100 generations for case 1, and 150-200 for case 2), whereas the optimal solution is
not found in 1000 generations for pure random search (case 3), illustrating the need for a selective pressure
for evolutionary algorithms.

In addition to convergence speed, the population diversity during evolution can be analysed. It is
expected that a higher diversity would lead to a higher chance of �nding the optimal solution at long-term.
To compare diversities, the Shannon entropy [51] is used in this work, which is an extension of the entropy
concept in information theory, and is particularly used in biology to quantify biodiversity. For a given
population, Shannon entropy H is de�ned as:

H = �
X

i

pi � log2(pi ) (2)

where i are the di�erent phenotypes observed in the population, andpi is the probability of observing the
phenotype i among the population (i.e. the fraction of population corresponding to the same phenotype).
Two individuals belong to the same phenotype if their �owsheet and objective functions are identical. The
comparison of �owsheets can be performed by checking if the directed graphs associated to the process
structure are isomorphic (i.e. they show exactly the same �owsheet / process structure).
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Figure 7: Optimization progress for several selection-replacement methods (median in lines, interquartile ranges in gray). See
the corresponding phylogenetic trees and Shannon entropy on Figure 8. The relative distance to the optimal solution is equal
to 1 at initialization (annual pro�t of the initial population, -1831 k$/yr) and to 0 when convergence is reached (annual pro�t
of the optimal solution, 1283 k$/yr).

Figure 8: Example of phylogenetic trees and Shannon entropy for several selection-replacement methods during the �rst 100
generations. The vertical axis of phylogenetic trees represents generations, starting with the initial �owsheet down to the
100th generation, nodes represent individuals and edges ancestral relationships. The corresponding convergences are plotted
on Figure 7
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The higher the entropy, the higher the biodiversity among the population is. A diverse population has
a better long-term viability, meaning a higher chance of �nding the optimal solution. A null entropy means
that the entire population is uniform with only one phenotype, it only appears during initialization. The
maximal entropy is achieved if all individuals are unique in the population. If the number of individuals per
generation is 50, the maximal entropy of the system islog2(50) � 5:64 (pi = 1=50, 8i 2 [1; 50]).

Complementary to Shannon entropy, the phylogenetic trees provide visual information on diversity,
representing the ancestral relationships with generations. An example of the evolution of Shannon entropy
with generations is presented in Figure 8 for the three cases (same random seed), as well as the phylogenetic
trees, for the �rst 100 generations.

No speci�c pattern appears for the phylogenetic tree of case 3, since it corresponds to a random ex-
ploration. For other cases, branches exist in the trees due to selective pressure. A massive extension even
appears during the �rst generations for case 1 (random selection, linear ranking for replacement). Quanti-
tatively, the Shannon entropy for the random exploration (case 3) quickly increases with generations, and
stabilizes close to the maximal entropy of 5.64. For case 2, the Shannon entropy also stabilizes after a few
generations, but at a lower Shannon entropy value (around 1-2). Yet, the optimal solution is found in less
than 200 generations (cf. Figure 7). Interestingly, the case 1 leads to high Shannon entropy, also close to
the maximal entropy, reaches a maximum around 60 generations and then decreases. The loss of diversity
corresponds to the branch extinction appearing in the phylogenetic tree, and to the generation where an
optimal solution is found. After the maximum in entropy, the population evolves with a diversity decrease
as more individuals isomorphic to the optimal solution are generated.

From these results, random selection and linear ranking for replacement appear to be the most e�cient
combination since it leads to a faster convergence fur 10 runs (cf. Figure 7), while leading to a high
population diversity (cf. Figure 8). Hence, a higher chance of �nding the optimal solution is expected at
long-term.

Population size and mutation rate
The sensitivity to mutation rate ( � ) and population size (N ind , number of individuals per generation)

is assessed. More than 200 optimizations were performed to cover the parameters ranges, the number of
process evaluation required to �nd the optimal solution is reported on Figure 9.

The mutation rate represents the fraction of the population that is replaced at each generation. As seen
on Figure 9 (top), too low or too high mutation rates lead to a large number of process evaluations. The
population size manifests a similar behaviour at high values of number of individuals per generation. A
mutation rate between 0.3 and 0.6, and a population size between 30 and 50 seems to be a good compromise
of evolution within a generation. The mutation probabilities ( padd , premove , ppermut ) were also assessed but
no clear trend is observed while variating the mutation probabilities between 0.05 and 0.2.

Choice of evolution parameters
This sensitivity analysis highlights the importance of parameters choices, since the convergence speed

can triple depending on the tuning. Other selection/replacement methods could be investigated (e.g. �tness-
proportionate, exponential ranking, tournament, age-based), in combination with all other evolution control
parameters (population size, mutation rate, probabilities) to cover the entire parameters space, which rep-
resents a high number of possibilities. For further tuning, the Shannon entropy could be used to obtain
information on the parameters relevance, for example by using the REVAC method [52].

3.5. Case study conclusion

The objective of the case study was to validate the proposedab-initio process synthesis method on a
well-known problem. The same structures have been obtained, without assuming neither the number and
types of unit operations nor their interconnections (e.g. reactors before separators, presence of recycle). The
proof of concept of the newly proposed process synthesis strategy is therefore considered as validated. The
adequacy in terms of solution obtained from two di�erent approaches is remarkable and should be stressed.
No previous study addressed, to our knowledge, such a critical comparison. Yet, no new solutions were
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Figure 9: Sensitivity to evolution control parameter - median and interquartile range of the number of function evaluations
required to �nd the optimal solution as function of the mutation rate (top) and the number of individuals per generation
(bottom) using 10 runs with di�erent random seeds

found compared to the reference paper used for the case study [30], probably because their superstructure
already encompassed a large number of possibilities, using 32 binary variables (~ 4 billions possibilities).

In this work, the method generally requires fewer than 5000 evaluations to converge (for a number of
combinations superior to 109), which is performed with a CPU time around 2 minutes on a single processor
(no parallelization performed yet). This low CPU-time is due to the very simple numerical models used for
process units (see the Appendix, no thermodynamic calculations is performed and process units models are
mainly composed of analytical expressions) and is not expected to be encountered in real-case applications.
The percentage of non-convergence (due to initial values or incoherent structures) observed for the various
runs varies between 2 an 20% with an average of 8% on 100 runs.

It should be reminded that this case study remains quite simpli�ed. A higher number of degrees of
freedom would be available if non-ideal separations, columns with staged withdrawals and feed, as well as
Cl2 injection and HCl stripping were integrated into the PSE problem, possibly leading to more complex
structures.

4. Discussions and perspectives

4.1. On the elementary building blocks

The elementary building blocks include numerical models to calculate outlet streams and parameters
from inlet streams and parameters, requiring a certain e�ort depending on the model complexity. The
important question in such process synthesis problem is: where to put the e�ort?
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Types of models
The process designer should put importance into the blocks de�nition according to the treated problem.

Simpli�ed functional or physical models provide relatively few information but are easier to develop and
numerically more robust. On the contrary, rigorous models provide detailed information such as a precise
link between design and performance, but could be di�cult to solve in some cases (internal convergence pro-
cedure), hence penalizing the optimization. To circumvent (numerical) complexity, one could use simpli�ed
physical models (such as ideal conditions instead of rigorous thermodynamic models, or e�ective di�usivities
instead of Maxwell-Stefan equation for multicomponent mass transfer), but at the �potentially huge� cost
of losing accuracy, or missing physical limitations (such as azeotrope in distillation, or di�usion barrier in
multicomponent transfer). Depending on the case, a simpli�ed models may not be suited.

The use of surrogate models �tted from a rigorous model may be a good compromise. It requires an
additional e�ort to de�ne a proper numerical design of experiments covering the entire search space (i.e. unit
inlets and degrees of freedom) and to perform the model reduction. A large variety of surrogate models can
be used (neural networks, polynomial chaos, response surface, kriging etc.). Such models allow to bene�t
from the information of a complete physical model with the numerical robustness of a simpli�ed one. It
should also be noted that this solution allows to use already available models (e.g. former models, using
commercial simulator to perform the design of experiments) without requiring informatics coupling between
codes.

Internal or external integration
In the case of complex units, numerous degrees of freedom peculiar to the nature of the unit needs to be

determined by optimization, including integer values. For example, distillation columns and more speci�cally
heat integrated distillation columns (HIDiC), optimal design requires to determine both continuous (e.g. heat
duties, �owrates) and discrete variables (number of stages, withdrawals and injection stages). To deal with
such systems, the question is to choose between resolvinginternally or externally the case of integer decision
variables.

If the complexity is dealt internally , a MINLP problem needs to be solved within the unit operation
model, while keeping the NLP for convergence and optimization of macroscopic continuous variables at
the process level. Such an approach may be long and tedious since the MINLP sub-problem needs to be
solve a large number of times, but the overall Process Synthesis problem remains as simple as for a single
distillation column. If the complexity is dealt externally, it can be directly integrated in the synthesis
problem by decomposing the distillation columns into other elementary building blocks (e.g. theoretical
stage / transfer unit, mixers, splitters, reboiler, condenser). This approach complexify the Process Synthesis
problem but synergies may be obtained. Intensi�ed units such as reactive distillation could emerge if we
consider reaction and separations as elementary building blocks. In the presented method, both approaches
would be possible, depending only on the choice of available building blocks by the user.

Beyond unit operations as building blocks
The conceptual method lies on the arrangements of elementary 'black-boxes' building blocks. These

blocks could therefore represent more than just unit operations. For instance, one could extend the method
using building blocks as phenomenological modules, or an entire existing process (e.g. for retro�tting study),
or even a task to be performed (for scheduling optimization). Using building blocks not based on process
units have already been explored in literature focused on Process Intensi�cation but few in Process Systems
Engineering studies. Such building blocks could for example be based on general heat/mass module [20],
elementary process functions [22] or directly involved phenomena [23, 24, 25]. No further development would
be required to the method, the limitations coming essentially from the process designer creativity.

4.2. On the synthesis drivers

As in all process synthesis methods, the choice of synthesis drivers is crucial to de�ne appropriate
constraints and objective function. Such drivers should re�ect the designer's criteria, and commonly need
to integrate several design and performance considerations. Some criteria can be integrated as optimization
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constraints (e.g. security, material temperature limits) while others can be used to de�ne the objective
function (e.g. energy, economics, environment).

A key aspect is the introduction of a parsimony principle into the problem formulation to limit the
number of equipment and process complexity as much as possible (i.e. when not necessary). This aspect is
exacerbated in case ofab-initio process synthesis since the algorithm can generate very complex structures.
For the case study, an economic objective function was used. It introduced a sort of parsimony principle:
each equipment comes at a certain cost, unit operations inducing no performance improvement are therefore
dismissed.

A possibility would be the use of RAM (Reliability, Availability, Maintainability) analysis, allowing to
convert process complexity into a loss of operability (e.g. a decreased in annual operation time). Such
analysis, if integrated into the objective function, would quantify if an increase in process complexity would
imply a su�cient gain compared to the loss of operability.

It should also be noted that working with economic functions comes with certain uncertainties due to
the process maturity (Technology Readiness Level from 1 up to 9 such as lab-, pilot and industrial scales)
and/or the e�ort put on the evaluation (e.g. conceptual study, basic design, detailed engineering). These
uncertainties needs to be properly evaluated [53], especially when comparing several process alternatives.

4.3. On the uses ofab-initio process synthesis

The interest and drawbacks of the proposed approach in comparison with other process synthesis meth-
ods are yet to be determined. Global optimization methods used for process synthesis, such as MINLP
formulation, provide the optimal solution in a restricted search space; whereasab-initio approaches in-
trinsically cannot guarantee the convergence since they freely explore the structure possibilities. The use
of evolutionary programming algorithms for process synthesis could show interest to circumvent the bias
appearing in new conceptual studies and other problems with a very large number of possible combinations.

In approaches using total connectivity based superstructure, it is possible to be as exhaustive as possible
in the interconnections of process units by allowing free connections between the chosen units. However,
the same intrinsic bias exists in these approaches since an appropriate set of unit operations needs to be
postulated. To increase the chance of �nding an optimal solution, the number of unit operations can be
increased, potentially leading to technical limitations (e.g. convergence issues, computational time) due to
the large size of the system. Compared to the presented approaches, it may not be di�erences between the
results in practice (which is yet to be tested). Still, one potential interest of ab-initio approaches is that
the initial time spent to de�ne the problem may be reduced in the proposed approach since the `process
designer' only needs to de�ne the available building blocks (e.g. process unit operation, process function) so
that it may focus on the process problem de�nition, rather trying to include as many alternatives as possible
in a mathematical formulation. Further works will try to compare both approaches on a same problem.

Both types of approaches could also be very complementary and used sequentially. Anab-initio ap-
proach could be used initially to explore the in�nite search space using the de�ned unit operations; then,
the structural results of the best individuals could be analysed to de�ne a superstructure; eventually, a
superstructure-based approach would �nd the optimal solution within this restricted design space.

5. Conclusion

A new process synthesis approach is proposed which frees from the de�nition of a set of structure
alternatives such as a process superstructure. From a set of unit operations and an objective function
de�ned by the user -i.e. the process designer-, the method systematically constructs process �owsheet
structures using an Evolutionary Programming (EP) algorithm and evaluates them using a Non-Linear
Programming (NLP) algorithm. The method's implementation, called PSEvo, has been tested on a reaction-
separation-problem. Obtained optimal solutions are in compliance with literature [30], which validates the
proof-of-concept.

Future works will include:
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ˆ Comparison between several Process Synthesis approaches on the same case study using rigorous
models for process units. Candidate problems include separation processes and power cycles in order
to evaluate the method performance with multicomponent and highly integrated processes.

ˆ Comparison of di�erent strategies for the de�nition of integrated process units, to de�ne the best
options between integrating the unit complexity within the process unit model and decomposing the
unit into elementary functions.

ˆ De�nition of appropriate synthesis driver (objective functions and constraints) to consider both process
complexity and economic uncertainties during the synthesis procedure.

.
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Nomenclature

Ctot molar density (kmol=m3)
Fi ; Ftot partial and total molar �owrate (kmol/hr)
Fobj objective function
g inequality constraints
h equality constraints
H Shannon entropy index
k kinetic constant (s� 1)
pi probability of observing an individual (process)

among the population
P purchase of reactants ($/hr)
r split ratio
s (guessed) tear stream variables
�s calculated tear stream variables
S product sales of B ($/hr)
t tear equations
V reactor volume (m3)
x decision variables in the process
z; zl ; zu optimization variables, lower/upper limits
Greek letters
� mutation rate
Sub- and superscripts
add addition of a unit operation (mutation operator)
in inlet of a unit operation
ind individual
out outlet of a unit operation
permut permutation of two streams (mutation operator)
remove removal of a unit operation (mutation operator)
top top of distillation column
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bottom bottom of distillation column
Abbreviations
CAPEX Capital expenditure ($)
CSTR Continuous Stirred-Tank Reactors
EA Evolutionary Algorithm
EP Evolutionary Programming
MINLP Mixed Integer NonLinear Programming
NLP NonLinear Programming
OPEX Operational expenditure ($/yr)
PFR Plug Flow Reactor
PI Process Intensi�cation
PSE Process Systems Engineering
PSEvo Process Synthesis by Evolution
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Stream connectivity Inlet parameter Outlet streams Outlet parameters
Feed 0 inlet, 1 outlet FA 2 [50 � 100] FA;out = FA P = (19 :88 + 27:87)FA

kmol/hr FB;out = 0
FC;out = 0

Out 1 inlet, 0 outlet none none Fprod;B =

�
0 if xB < 1
FB;in if xB = 1

Mixer 2 inlets, 1 outlet none F i;out = F i;in 1 + F i;in 2 CAP EX mix = 500$
i = f A; B; C g

Splitter 1 inlet, 2 outlets r 2 [0:05 � 0:95] F i;out 1 = r � F i;in CAP EX split = 500$
(split ratio) F i;out 2 = (1 � r ) � F i;in

i = f A; B; C g
CSTR 1 inlet, 1 outlet V 2 [0:01 � 50] See eqs. 6 and 7 CAP EX CST R (see eqs. 8 and 9)

m3

PFR 1 inlet, 1 outlet V 2 [0:01 � 50] See eqs. 10 CAP EX P F R (see eqs. 11 and 12)
m3

Dist A =BC 1 inlet, 2 outlets none F top
A;out = FA;in ; F bottom

A;out = 0 CAP EX A=BC (see eqs. 13)
F top

B;out = 0 ; F bottom
B;out = FB;in OP EX A=BC (see eqs. 14)

F top
C;out = 0 ; F bottom

A;out = FC;in

Dist AB =C 1 inlet, 2 outlets none F top
A;out = FA;in ; F bottom

A;out = 0 CAP EX AB=C (see eqs. 16)
F top

B;out = FB;in ; F bottom
B;out = 0 OP EX AB=C (see eqs. 17)

F top
C;out = 0 ; F bottom

A;out = FC;in

Table 2: De�nition of unit operations for the case study

Appendix: expressions for the case study

Stream description

3 stream variables: FA ; FB ; FC (partial molar �owrates, in kmol/hr)

Objective function

The objective function is the annualized pro�t ($/yr):

Fobj = 720 � (S � P) �
�

CAPEX
2:5

+ 0 :52� OPEX
�

(3)

with:

� S is the sales of B ($/hr), - see below (4).
� P is the purchase of reactants ($/hr) - see 'Feed' unit operation in Table 2.
� CAPEX is the process capital cost ($) - sum of the CAPEX of all unit operations,CAPEX =

P
i CAPEX i

with
i 2 f CSTR; PFR; Mixer; Splitter; Dist A=BC ; Dist AB=C g.

� OPEX is the process operating cost ($/yr) - sum of the OPEX of all unit operations, OPEX =P
i OPEX i with

i 2 f Dist A=BC ; Dist AB=C g.
� 2.5 is the payout time (yr),
� 0.52 is the income tax rate.
� 720 is the annual operation time (hr/yr). The authors [30] did not report the operation time but it was

calculated from one of their example. They obtained a process with a pro�t of 1224 k$/yr (Fobj ), an
annual cost of 321 k$/yr (CAP EX

2:5 + 0 :52OPEX ), a production of 50 kmol/hr ( S = 2481 $/hr), and a
fresh feed stream of 51.97 kmol/hr (P = 4634 $/hr). The operation time is therefore 720 hr/yr.
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The product salesS are calculated considering the production target of 50 kmol/hr of pure B (92.67 $/mol).
The purity and productivity targets are integrated into the objective function through the product sales,
avoiding to de�ne an additional process constraint:

S =
�

92:67� 50 if Fprod;tot � 50
0 else

(4)

' 92:67� 50� H smooth (Fprod;tot � 50)

To ensure continuity, a smooth approximation of the Heaviside function is used:H smooth (x) = 1
1+exp( � kx )

(with a chosen steepnessk = 5000 here).
The overall production Fprod of pure B (in kmol/hr) is computed from the 'Out' units:

Fprod;tot =
X

Out

Fprod;B;i =
X

Out

H smooth (xB;i � 1) (5)

Available unit operations
The unit operations are detailed in Table 2 and below.

Feed
The 'Feed' has an optimizable �owrate, which is adjusted by the NLP to satisfy the production target of

50 kmol/hr (see Ÿ4). The outlet parameter is the purchase of reactantsP (in $/hr), which includes benzene
(A, cost of 27.87 $/kmol) and chlorine (cost of 19.88 $/kmol) in equimolar quantities: P = (19 :88+27:87)FA .

Out
The 'Out' unit is the process outlet. Its calculated parameter is the produced �owrate, which is null if

the B purity xB ( xB = FB =(FA + FB + FC )) is lower than 1.

Mixer and splitter
Unlike in [30], a capital cost of 500$ is considered for mixers and splitters. This value is low compared

to capital cost of other unit operations, it is introduced to a�ect a penalty (even low) to each block.

CSTR
The CSTR outlet streams are calculated by the following equations:

Fi;out = Ftot � x i;out i = f A; B; C g (6)

with Ftot = FA;in + FB;in + FC;in the total molar �owrate (invariant during reaction), and x i;out the molar
composition at the outlet, calculated by mass balance:

xA;out =
xA;in � Ftot

Ftot + V � k1 � Ctot

xB;out =
Ftot � xB;in + V � xA;out � k1 � Ctot

Ftot + V � k2 � Ctot
(7)

xC;out =
Ftot � xC;in + V � xB;out � k2 � Ctot

Ftot

with k1 = 0 :412 s� 1, k2 = 0 :055 s� 1, and the molar density Ctot = 11:22�xA +9 :86�xB +8 :84�xC (kmol=m3).
Since the outlet composition is unknown, a �rst estimate of Ctot is calculated using inlet composition, then
an iterative procedure is adopted until convergence.

The CSTR CAPEX is calculated respectively for Case A (same cost for PFR and CSTR) and for Case
B (higher cost for PFR) from:

CAPEX CST R; Case A = 12760:43 + 14059:78� VCSTR (8)

CAPEX CST R; Case B = 25795:0 + 8178:0 � VCSTR (9)
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PFR
The PFR outlet streams are calculated by integrating the following ordinary di�erential equations:

dFA

dV
= � k1 � Ctot �

FA

Ftot

dFB

dV
= k1 � Ctot �

FA

Ftot
+ k2 � Ctot �

FB

Ftot
(10)

dFC

dV
= k2 � Ctot �

FB

Ftot

with the initial conditions: Fi (V = 0) = Fi;in i = f A; B; C g. The molar density is recalculated at each
integration step.

The PFR CAPEX is calculated respectively for Case A (same cost for PFR and CSTR) and for Case B
(higher cost for PFR) from:

CAPEX P F R; Case A = 12760:43 + 14059:78� VPFR (11)

CAPEX P F R; Case B = 2984:938 + 49332:715� VPFR (12)

Distil lation columns
In [30], four di�erent columns were de�ned to distinguish ternary (A/BC, AB/C) and binary separations

(A/B, B/C). In this work, only two are used (A/BC, AB/C), the di�erent equations between ternary and
binary separations are chosen according to feed compositionx i;in = Fi;in =(FA;in + FB;in + FC;in ).

DistA =BC . If the feed does not contain C (xC;in = 0 ), the column is equivalent to a binary A/B distillation
(column 4 of [30]). If not, it is a A/BC distillation (column 1 of [30]). CAPEX and OPEX are calculated
accordingly:

CAPEX A=BC =

8
>><

>>:

132718:16� Ftot;in �
(369:05� xA;in � 1113:86� xB;in ) (if A/B )

86844� Ftot;in � 1136� xA;in (if A/BC)

(13)

OPEX A=BC = (21 :67 + 4:65) � Ftot;in � qA=BC (14)

with qA=BC =
�

10:70 + 28:41� xA;in (if A/B)
3:0 + 36:1 � xA;in � 7:7 � xB;in (if A/BC)

(15)

DistAB =C . If the feed does not contain A (xA;in = 0 ), the column is equivalent to a binary B/C distillation
(column 3 of [30]). If not, it is a AB/C distillation (column 3 of [30]). CAPEX and OPEX are calculated
accordingly:

CAPEX AB=C =

8
>>>><

>>>>:

25000 +Ftot;in ��
6985� xB;in � 3870� x2

B;in

�
(if B/C)

211547� Ftot;in �
(1010:0 � xA;in � 479:0 � xB;in ) (if AB/C)

(16)

OPEX AB=C = (21 :67 + 4:65) � Ftot;in � qAB=C

with qAB=C =
�

10:70 + 28:41� xA;in (if B/C)
3:0 + 36:1 � xA;in � 7:7 � xB;in (if AB/C)

(17)


